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Abstract

As a widely applied metaheuristic algorithm, the Genetic Algorithm
(GA) performs excellently in finding near-optimal solutions. Among its
components, the crossover operator plays a critical role in improving both
the optimization effectiveness and the computational efficiency. The Se-
quential Constructive Crossover (SCX) is considered one of the most ef-
fective crossover operators; however, its greedy nature often leads to pre-
mature convergence, limiting the algorithm’s global search capability. In
recent years, several improvements to SCX have been proposed; Neverthe-
less, related research remains relatively limited. To address this issue, this
paper proposes a novel Adaptive Multi-Operator Sequential Constructive
Crossover strategy (AMSCX), which integrates SCX with other crossover
techniques and dynamically adjusts the crossover mechanism based on
the evolutionary generation. This approach enhances population diver-
sity and improves global search performance. The experimental results
demonstrate that the proposed method effectively alleviates the tendency
of SCX to get trapped in local optima and significantly improves the al-
gorithm’s performance in solving the Vehicle Routing Problem (VRP).
Keywords : sequential constructive crossover, partially mapped crossover,
vehicle routing problem, adaptive multi-operator strategy

1 Introduction

The Vehicle Routing Problem (VRP) [1] is a key logistics challenge. Since its
introduction in 1959, it has become central in operations research. With the
growing complexity of commercial operations and technological advancements,
researchers have continuously sought more effective methods for optimizing ve-
hicle routes and delivery schedules. Over time, the study of VRP has diversi-
fied into several variants—including the Capacitated Vehicle Routing Problem
(CVRP), Vehicle Routing Problem with Time Windows (VRPTW), and Het-
erogeneous Fleet Vehicle Routing Problem (HFVRP), each addressing different
operational needs and constraints. These variations reflect the complexities
of real-world logistics, where factors such as delivery time windows, customer
preferences, and fleet diversity must be considered. As a result, solving VRPs
often requires multi-objective optimization approaches that balance cost effi-
ciency with service quality. Despite the differences among VRP variants, their
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common goal remains minimizing total delivery costs while maintaining a high
level of service quality [2].

The CVRP, a core variant, deals with delivering goods under vehicle ca-
pacity constraints. The research findings [3]indicate that, to identify research
trends over the past decade, a systematic review was conducted on articles
published between 2010 and the first quarter of 2020. CVRP emerged as the
most extensively studied variant, owing to its relatively simple structure and
its ease of integration with other problem variants. Consequently, the develop-
ment of algorithms based on the CVRP remains of significant importance. At
the same time, with growing concerns about environmental sustainability and
the efficient use of resources, researchers and industry professionals are actively
exploring more advanced vehicle routing optimization algorithms to meet the
evolving demands of the market and societal expectations [4].

To address the aforementioned issues, we consider the use of metaheuristic
algorithms, which are renowned for their excellent global search capabilities in
multi-objective problems. Various evolutionary algorithm techniques have been
widely applied in practical scenarios, with some methods specifically designed to
solve the VRP. For instance, the Grasshopper Optimization Algorithm [5], the
Whale Optimization Algorithm [6], and the traditional Grey Wolf Optimizer [7]
have all been adapted to handle different VRP variants with specific constraints.
Furthermore, the Genetic Algorithm [8] has also been extended through hybrid
approaches to enhance solution quality and computational efficiency.

2 Related Work

The SCX was first introduced in 2010 for solving the TSP [9] using genetic algo-
rithms. The SCX operator constructs offspring by selecting superior edges from
parent chromosomes while preserving their node sequence. It was also applied
to the VRP [10]. Regarding improvements to SCX, the following related stud-
ies have been conducted. The multi-parent sequential constructive crossover
(MPSCX) [11] is an improved crossover method that extends the traditional
two-parent, sequential constructive crossover into a multi-parent crossover, sig-
nificantly enhancing the quality of the tour. A multiple-parent hybrid order
and cost-based sequential constructive crossover (MPHOSCX) [12] is proposed.
More genetic high-quality information is transmitted through multiple parents,
while the cost-based crossover operation ensures the efficiency of the algorithm.
Additionally, a nearest neighbor inverse operation is employed to enhance the al-
gorithm’s overall exploitation capability. Reverse Greedy Sequential Construc-
tive Crossover (RGSCX) and Comprehensive Sequential Constructive Crossover
(CSCX) are proposed to solve the TSP [13]. An Adaptive SCX (ASCX) [14]
is introduced, which adaptively creates offspring based on the cost of the next
node, allowing the selection of forward, backward, or mixed directions. The En-
hanced Sequential Constructive Crossover (ESCX) [15] operator improves the
performance of the SCX operator by refining the selection criteria during off-
spring generation. In addition to considering the actual cost of traversed cities,
ESCX incorporates an estimated cost of the remaining tour, selecting the next
node to construct the offspring based on this combined evaluation. The Staged
Sequential Constructive Crossover (SSCX) [16] enhances population diversity
by introducing new individuals, aiming to overcome the limitations of the SCX
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Figure 1: The flowchart of the AMSCX algorithm

3 Method

Before population initialization, individuals are encoded to meet customer de-
mands without exceeding vehicle capacity. The algorithm then evaluates fitness
and performs selection and crossover. Mutation is not included, as the focus is
on crossover. After reaching the maximum iterations, the population is decoded
to produce the final delivery plan shown in Figure 1.

Algorithm 1 Adaptive Multi-Operator Sequential Constructive Crossover

Input: P, P>
: Qutput: O1, O2

. if rand < p then
01,02 «+— PMX
01,03 + SCX

else
01,02 + Disturb(d)
01,02 < SSCX
. end if
: return Oy, O2

: pyd+ a+ B x (gen/MAXGEN)

The algorithm takes two parent individuals and dynamically adjusts the
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crossover probability and disturbance intensity based on the current generation,
as shown in Equation 1. If a random number is below the crossover probability,
PMX and SCX are applied for local exploitation; otherwise, a perturbation is
performed, followed by SSCX to enhance diversity and global exploration. The
algorithm outputs two optimized offspring, balancing global and local search to
improve convergence speed and solution quality.

gen

In this formula, o represents the initial value and § denotes the growth
increment, so o + B corresponds to the maximum value reached in the final
generation. Here, p is the crossover probability, and although d is referred to as
the disturbance intensity, it essentially controls the frequency of crossover and
structural perturbation; gen denotes the current generation, and MAXGEN
represents the maximum number of generations. As gen/MAXGEN increases,
the parameters smoothly grow from a to a + [, enabling adaptive adjustment.

4 Experiment

The experimental parameters are presented in Table 1. All computations in this
paper were performed using MATLAB (R2024a) optimization software. Each
experiment was repeated 10 times, and the results were averaged for reporting.
The experiments were conducted on a computer equipped with an Apple M3
chip and 8GB of RAM, running the macOS operating system, presents the
parameter settings of the genetic algorithm, including a population size of 200,
1000 generations, a crossover probability (P,) of 1.0, a mutation probability
(Py,) of 0.0, parameters a = 0.3 and 3 = 0.2, and a generation gap of 0.9.

Table 1: Solution Comparison Between Instances
Problem  Optimal SCX [9] SSCX [16] ESCX [15] AMSCX

E-n22-k4 375 433.7607 398.8773 407.6569 382.1334
E-n23-k3 569 686.9838 608.0915 588.1282 582.6155
E-n30-k3 534 616.5296 578.9348 577.3538 559.6946
E-n33-k4 835 931.6529 884.5905 895.0260 873.4746
E-n51-k5 521 761.9220 658.2788 632.9688 610.6101
E-n76-k7 682 1.0467e+03 841.9857 885.1311 863.8985
E-n101-k14 1067 1.5587e+03 1.3695e+03  1.4027e+03  1.3975e+03
A-n32-k5 784 874.3511 872.6946 862.8645 825.3016
A-n33-k5 661 711.5105 716.0976 709.8535 705.2793
A-n80-k10 1763 2.1066e+03 2.0027e+03  2.0553e+03  2.0274e+03
B-n31-k5 672 683.8104 683.4488 684.6724 680.0111
B-n50-k7 741 816.9760 852.3081 823.7860 804.8544

5 Conclusion

Under identical parameters, four crossover algorithms were tested. Figure 2
shows the iterative convergence of 12 instances, with summarized results in Ta-
ble 1. AMSCX outperforms the others in 9 instances, performing strongly in
small- to medium-scale problems and moderately in large-scale ones. Boxplots
in Figure 3 confirm its stability, with lower variance and fewer outliers. The
3D iterative plot shows that AMSCX maintains high fitness, indicating superior
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convergence and stability, while retaining SCX’s fast iteration advantage. How-
ever, under strict constraints, AMSCX can produce infeasible solutions. Future
work will aim to expand the search space and improve solution feasibility.

S Setesssss et RS

(a) E-n22-kd (b) E-n23-k3 (2) E-n101-k14 (b) A-n32-ks

(c) E-u30-k3 () E-n33-k4 () An33-ks

(e) E-n51-k5 (£) E-n76-k7 (e) B-n31-k5 (f) B-030-k7

Figure 2: Results of Crossover on Different CVRP Instances,Six Subfigures on
the Left and Six on the Right
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Figure 3: Box plot and 3D Iteration Visualization of AMSCX
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