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Abstract

Cucumbers are an economically important crop in Japan and globally,
and pest infestation poses a significant threat to their yield and quality.
Conventional manual inspection methods are inefficient, subjective, and
highly dependent on human expertise. Recently, deep learning-based ap-
proaches have shown strong potential in crop pest and disease detection;
however, existing models still struggle to accurately segment small-scale
insect damage traces characterized by low contrast and complex back-
grounds. To address these limitations, this study proposes an enhanced
YOLOv8-Seg architecture integrated with the Efficient Channel Attention
(ECA) mechanism. The introduced ECA module adaptively strength-
ens inter-channel feature weighting within the neck stage, improving fine-
grained feature extraction and noise suppression. Experimental results
demonstrate that the proposed ECA-YOLOv8-Seg achieves higher preci-
sion, recall, and mean average precision than the baseline YOLOv8-Seg,
effectively enhancing segmentation accuracy and robustness in cucumber
pest-damage detection.
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1 Introduction

Cucumbers are a globally cultivated vegetable crop and play an important eco-
nomic role in Japan and other countries [1]. Pest outbreaks—including leaf-
miners, aphids, and chewing insects—often cause severe damage to cucumber
leaves, leading to yield decline and quality deterioration [2]. Therefore, efficient
and accurate monitoring of pest damage is critical for sustainable cultivation
and optimal production.
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Traditional monitoring methods rely heavily on visual inspection by ex-
perts or farmers, which is labor-intensive, time-consuming, and prone to sub-
jective bias. Moreover, small-scale or early-stage damage—such as tiny holes or
mines—can be difficult to detect by the naked eye, resulting in diagnosis delays
and inadequate intervention. With the advancement of deep learning methods,
significant progress has been made in crop pest and disease detection tasks [3,4].
Models such as CNNs, U-Net variants, and YOLO series have been successfully
applied to leaf-level detection in crops such as cucumber and tomato [6]. Nev-
ertheless, fine-grained segmentation of irregular and small pest damage traces
still presents challenges due to low contrast between lesion and background,
high visual variability, and complex lighting conditions [5].

Among modern object-detection frameworks, YOLOvS8-Seg offers a unified
solution for detection and instance segmentation. However, its standard convo-
lutional architecture may struggle to capture subtle damage features and lacks
adaptive channel attention for discriminative feature weighting [7]. To address
these limitations, this study proposes an improved version of YOLOv8-Seg in-
tegrated with an Efficient Channel Attention (ECA) module [8]. The ECA
mechanism enhances channel-wise feature representation without significantly
increasing model complexity. By embedding ECA into the neck of YOLOvS-
Seg and combining CIoU and Distribution Focal Loss for boundary and mask
regression, the proposed model aims to achieve more accurate segmentation
of small pest damage regions. Experiments on a cucumber leaf pest-damage
dataset demonstrate that the improved model achieves higher mAP, Recall,
and IoU compared with the baseline—a result consistent with recent findings
showing the effectiveness of attention-based models for fine-grained pest detec-
tion [10,12].

2 Materials and Methods

2.1 Dataset Construction

The dataset used in this study was compiled from several open-source pest
image collections containing cucumber leaf damage samples. All images were
annotated using Labelme with polygon-based instance segmentation to accu-
rately outline pest-damage regions. The data were split into 70% training, 20%
validation, and 10% testing. The dataset includes three common damage types:
leaf-miner tunnels, edge chewing, and insect bite holes. This annotated dataset
provided the basis for model training and evaluation.

2.2 Model Architecture Improvements

The baseline model used in this study was YOLOv8-Seg, which consists of
three main parts: a backbone for extracting features, a neck for fusing features,
and a detection head for detecting and segmenting objects. To improve the
segmentation performance on small pest-damage regions, several modifications
were made to YOLOvS8-Seg.

An ECA module was added to the neck to enhance cross-channel feature
weighting, allowing the network to better emphasize pest-related features and
suppress background noise. In addition, the Complete IoU (CIoU) and Distri-
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bution Focal Loss (DFL) functions were combined to improve the stability of
bounding box regression and segmentation mask prediction. These modifica-
tions enhance detection precision while maintaining the lightweight and real-
time characteristics of the original YOLOv8-Seg architecture.

2.3 Model Training and Evaluation

All experiments were implemented using the PyTorch framework under a CUDA 12.1
environment on an NVIDIA RTX GPU. The AdamW optimizer was adopted
with an initial learning rate of 1 x 10~2 and a batch size of 16. The same hy-
perparameters were used for both the original YOLOv8-Seg and the improved
ECA-YOLOv8-Seg to ensure a fair comparison.

The evaluation metrics to determine the detection accuracy and segmenta-
tion quality of the models were Precision, Recall, mAP@0.5, mAP@0.5:0.95, and
IoU. In all experiments, the proposed ECA-YOLOv8-Seg more accurately and
robustly identified pest damage on cucumber leaves than the baseline YOLOvS-
Seg.

3 Results and Discussion

3.1 Experimental Results

According to the performance comparison presented in Table 1, the ECA-
YOLOv8-Seg model achieved notable improvements over the original YOLOvS-
Seg, including increases of 3.7% in mAP@0.5, 2.8% in Recall, and 2.7% in IoU.
This demonstrates that the incorporation of the ECA module effectively en-
hances the model’s fine-grained segmentation capability.

Model mAP@0.5 mAP@0.5:0.95 Recall Precision IoU Params (M)
YOLOv8-Seg 84.2 56.8 82.9 86.1 78.5 1152
ECA-YOLOv8-Seg 87.9 60.1 85.7 87.4 81.2 11.3

Table 1: Performance comparison of YOLOv8-Seg and ECA-YOLOv8-Seg
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Fig. 1: Comparison of mAP-IoU and Precision-Recall curves for the baseline
and ECA-enhanced models.
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Fig. 2: ROC curves and AUC comparison between YOLOv8-Seg and ECA-
YOLOv8-Seg.

Fig. 1 shows the mAP-IoU and Precision—Recall curves for the baseline and
improved models. The ECA-YOLOv8-Seg model achieves consistently higher
accuracy, particularly at higher IoU values, and outperforms the baseline across
all PR thresholds, indicating improved boundary segmentation and detection
stability. Fig. 2 shows the ROC curves of both models. The improved model
achieves a higher AUC (92.9% vs. 91.9%), indicating a better balance between
true positive and false positive rates.

3.2 Ablation Study

An ablation study was conducted to analyze the effects of different modules, as
summarized in Table 2. The model without any attention mechanism performed
the worst. When the SE or CBAM modules were applied, accuracy improved
slightly but remained limited for regions with small insect damage. With the
ECA module, both mAP and Recall reached the highest values. The ECA
mechanism enhances feature representation through channel weighting, improv-
ing segmentation performance in pest-damage detection. The training curves
show that the model with ECA converged more smoothly. According to the
confusion matrix, ECA-YOLOvS8-Seg achieved higher classification accuracy for
“edge chewing” and “leaf-miner tunnel” types, demonstrating stronger ability
to recognize complex damage patterns.

Table 2: Ablation study of different attention modules.

Attention AP50 AP50-95 Recall Precision IoU FPS

None (Baseline) 84.2 56.8 82.9 86.1 78.5 724
SE (Squeeze-and-Excitation)  86.2 58.7 84.6 87.0 80.1 70.2
CBAM (Channel + Spatial) ~ 87.0  59.2 85.1 87.2 807 68.1
ECA 87.9 60.1 85.7 87.4 81.2 71.0
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3.3 Discussion

The results indicate that incorporating the ECA attention mechanism can im-
prove detection and segmentation performance without significantly increasing
computational cost. Compared with SE (Squeeze-and-Excitation) and CBAM
(Channel and Spatial) modules, the ECA module adopts a simpler local chan-
nel interaction design that effectively emphasizes useful features. The proposed
approach achieves reliable detection accuracy and segmentation quality in cu-
cumber pest-damage identification tasks.

This study, however, still has some limitations. The dataset includes a lim-
ited number of pest types, and the model’s generalizability under complex con-
ditions is not yet sufficient. Future work will focus on expanding field-collected
samples and increasing data diversity to further improve robustness and adapt-
ability under varying environmental conditions.

4 Conclusion

This study proposed an improved ECA-YOLOv8-Seg model for detecting and
segmenting pest damage on cucumber leaves. The Efficient Channel Atten-
tion (ECA) module was integrated into the YOLOv8-Seg neck, together with
CIoU and Distribution Focal Loss (DFL), to enhance feature weighting and
boundary regression. Experiments showed that the improved model achieved
higher mAP@Q.5, Recall, and IoU than the baseline, demonstrating better seg-
mentation accuracy and stability. Attention mechanisms have been shown to
enhance visual feature extraction in pest recognition tasks, and ECA provides
efficient channel interaction with low computational cost while maintaining the
lightweight structure of YOLOv8-Seg. These findings align with recent studies
showing that attention-based models improve fine-grained pest detection under
real agricultural conditions.

Future work will expand the dataset with more pest species and field sce-
narios and explore multimodal information to improve robustness in complex
environments.
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