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Abstract

This paper presents an automated framework for generating synthetic three-dimensional Gaussian
splatting (3DGS) data to support the quantitative analysis of shape and texture descriptors. The system
integrates procedural shape modeling, texture mapping, multiview photorealistic rendering, and
structure-from-motion reconstruction to produce 3DGS datasets enriched with geometric and
appearance-based attributes, including spherical harmonics (SH) coefficients. These coefficients
capture lighting and material interactions, enabling the rotation-invariant analysis of the surface
appearance. Experiments using superellipsoids combined with various materials demonstrated that the
framework can systematically control the geometry and texture, producing consistent and reproducible
datasets. Analyses based on SH-derived principal component analysis, opacity correlation, spatial
density, and entropy confirmed that the generated data effectively revealed how surface roughness,
reflectance, and scale contributed to the internal structure of 3DGS scenes. The results highlight the
potential of synthetic 3DGS data as a controlled testbed for studying shape—appearance descriptors and

for advancing data-driven 3D representation research.
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1. Introduction

Three-dimensional Gaussian splatting (3DGS) [1] has emerged as a powerful alternative to
traditional 3D representation, such as polygonal meshes, point clouds, and voxel grids. Unlike
volumetric neural rendering methods such as neural radiance fields, 3DGS represents a scene
as a collection of explicit anisotropic Gaussian primitives, enabling real-time rendering with
efficient memory usage. This capability supports a wide range of applications, including
virtual and augmented reality, cultural heritage preservation, e-commerce, and scientific
visualization. Traditional 3D model retrieval systems have focused primarily on shape-based
descriptors, often employing handcrafted features or deep neural representations. However,
the structure of 3DGS requires a more comprehensive approach that captures not only the

geometric shape but also the color, material, and appearance under varying illumination
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conditions. This paper presents a system for the synthetic generation of 3DGS datasets and
the computation of descriptors that integrate both geometric and appearance-related features,

supporting tasks such as classification, retrieval, and pattern analysis.

2. Methodology

The 3DGS data are typically stored in formats such as PLY, SPZ, or SPLAT, which encode
Gaussian primitives with attributes such as position, scale, rotation, color, opacity, and
spherical harmonics (SH) coefficients. Among these, SH coefficients are particularly
important as they encode directional lighting and surface appearance. SH functions provide a
mathematical framework for representing functions on a sphere, and the power spectrum
derived from these coefficients is inherently rotation-invariant. This property has long been
utilized in fields such as chemistry and drug discovery for molecular shape comparison.
Extending this concept to 3DGS enables robust similarity searches across models with
different orientations.

To systematically generate 3DGS data, we designed an automated pipeline that integrates
shape modeling, texture mapping, rendering, and reconstruction. The pipeline begins with a
database of 3D shapes, either parametric such as superellipsoids or mesh-based, and a library
of textures, including materials such as rock, wood, metal, and glass. The rendering was
performed using the Persistence of Vision Raytracer (POV-Ray), a widely used ray tracer for
generating photorealistic computer graphics images. Multiple cameras are positioned around
each object to capture two-dimensional images from different viewpoints. The intrinsic and
extrinsic camera parameters were recorded for each image to enable an accurate 3D
reconstruction.

We then used structure-from-motion (SfM) via COLMAP [2] [3] to reconstruct the 3D
geometry from the rendered images, producing both a sparse point cloud and corresponding
camera poses. The reconstructed data were converted into Gaussian primitives, and the SH
coefficients and other rendering attributes were estimated. Although 3DGS data can be
generated directly from original 3D models, the SfM-based approach was chosen because it

captures realistic lighting and appearance interactions that are difficult to model analytically.
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3. System Architecture
The system consists of multiple modules, including input management, scene generation,
rendering, camera layout, SfM processing, 3DGS conversion, feature extraction, and data

export. The workflow proceeds as follows:

1. Input of shape and texture data
Scene generation and multiview rendering using POV-Ray

Recording of camera metadata

P B

3D reconstruction using COLMAP and conversion into Gaussian primitives,
including the estimation of SH coefficients via the official graphdeco-
inria/Gaussian-splatting [1] implementation

5. Feature extraction and export as CSV descriptors

This modular design enables the efficient batch processing of large datasets and parameter
sweeps across lighting, texture, and shape variations. Each module operates independently,
but contributes to a unified data pipeline that converts 3D assets into structured 3DGS
datasets suitable for quantitative analysis. At the end of the pipeline, three main tables
describe the reconstructed 3DGS data. Table 1 lists all raw attributes exported from the PLY
file, such as the position, normal, scale, rotation, opacity, and SH coefficients. Table 2
summarizes the derived metrics computed for each Gaussian point, including mean scale,
anisotropy, SH norms, and positional magnitude. Table 3 lists the global and statistical
descriptors, such as neighborhood density, principal component projections, and spatial
entropy. Together, these tables capture both the local and global properties of the Gaussian

primitives, forming a comprehensive dataset for analyzing the geometry, texture, and

appearance.
Table 1. Raw attributes (PLY fields)

Field Meaning
X, ¥, Z 3D coordinates of the Gaussian center.
nx, ny, nz Normal vector at the Gaussian center (if present).
£..dc ok Spherical Harmonic DC (base) color coefficients.
f rest_* Higher-order SH color coefficients.
opacity Opacity (0—1 range).
scale 0..2 Scaling factors of the Gaussian along principal axes.
rot_0..3 Rotation quaternion parameters.
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Table 2. Derived per-Gaussian metrics

Field Meaning
point_index Row index of the Gaussian point (0-based).
mean_scale Mean of the scale components ((scale(] + scale[J + scale[J) / 3).
scale_anisotropy Ratio of scale standard deviation to mean scale
sh_norm_rgb L2 norm over all SH RGB coefficients (color magnitude).
sh_norm_lab Luminance-weighted SH norm, using perceptual weights (Lab-like)
position_norm Euclidean distance from the origin (V(x2 + y2 + z2)).

Table 3. Global and statistical descriptors

Field Meaning
pca_X, pca_y, pca_z PCA projection of the position into the three principal axes.
knn_mean_dist Mean distance to the eight nearest neighbors (spatial locality).
knn_density Local density estimate (1 / (le” ° +knn _mean_dist)).
bbox_volume Global bounding box volume, repeated per Gaussian.
entropy global Global spatial entropy, repeated per Gaussian.

4. Experimental Results

To evaluate the system performance, experiments were conducted using superellipsoids,
which provide precise control over geometric parameters. Superellipsoids are parametric
surfaces that extend traditional ellipsoids by introducing two shape exponents that
independently define the curvature along orthogonal axes. This property enables the smooth
interpolation between spherical and cuboidal forms, making superellipsoids ideal for
systematically exploring geometric variations. Their analytical formulation also ensures
consistent surface sampling and a well-defined curvature, which are essential for accurate

reconstruction and descriptor evaluation.

(a) 3DGS (b) Initial point cloud (c) 3DGS (scale =0.50)

Figure 1: 3D Gaussian splatting (rust texture; 80,185 points; 30,000 iterations)

Five base shapes were paired with rock, wood, metal, and glass textures to produce 80 objects.

These textures represent the diffuse, specular, and refractive materials commonly used in
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graphics. Each object was rendered from multiple viewpoints to ensure comprehensive spatial

coverage.
PCA of Scales Opacity Distribution
14000
0.10
12000
0.05 10000
o >
£ 000 g 8000
<
b3 3
S o0 E om0
-0.10
2000
—0.15
0
0.0 o1 0.2 03 o4 =50 -25 00 25 50 75 100 125
PCAscale 1 Opacity
Lab Norm Distribution SH Norm Distribution
25000
12000
20000 10000
g 15000 e S0
@ g
S & 6000
g 10000 g
4000
5000
2000
0 [
0 20 40 60 80 100 120 140 000 025 050 075 100 125 150 175
Lab Norm SH Norm

Figure 2: Statistical summary of Gaussian splatting data.

As an example, one superellipsoid defined by the shape parameters el = 0.8 and e2 = 0.6
was rendered with a stone texture labeled “Rust.” The object was placed at the center of the
scene, and 72 virtual cameras were arranged along a spiral orbit around it. Images were
captured from each viewpoint at a resolution of 1024 x 768 pixels, providing sufficient detail
for SfM reconstruction. The resulting images were then converted for compatibility with the
INRIA 3DGS model and used for training. As the synthesized objects were the primary
targets, the system employed mask images to isolate each object from the background. In
addition, accurate camera positions and orientations were passed to the training process to
ensure correct spatial alignment. Using the Rust texture provided in the “textures.inc” file as
an example, the total training time was approximately 30 min on a PC equipped with a Ryzen
9 5950X CPU and a GeForce RTX 4060 Ti GPU, resulting in 3DGS data of approximately
80,185 Gaussian center points. These Gaussian primitives collectively encoded the spatial
structure, color, opacity, and lighting, resulting in a compact and expressive representation
compatible with the SIBR [4] viewer system.

Figure 2 provides a concise summary of the structure and lighting characteristics of the

Gaussian splatting dataset. Principal component analysis (PCA) of the scale plot showed that

=12E =



MOTOFUMI SUZUKI

most Gaussians clustered near the origin, indicating small, nearly isotropic shapes with
minimal variation. A few outliers with higher PCA values corresponded to larger structural
elements, suggesting balanced scale diversity. In the opacity distribution, most Gaussians
exhibit low opacity, producing smooth blending across the scene, while a small fraction with
high opacity defines solid, visible regions. The Lab Norm Distribution revealed two main
peaks: one near zero for dark regions and another around 100-120 for bright, reflective areas,
demonstrating broad luminance variation. The SH Norm Distribution declines steeply,
indicating that diffuse, low-frequency lighting dominates, with limited high-frequency
highlights.

5. Conclusion

This paper presented an automated framework for generating synthetic 3DGS data from
procedurally modeled shapes and textures. By combining rendering, SfM reconstruction, and
descriptor extraction, the system enables the systematic analysis of geometric and appearance
features. Experiments with superellipsoids and materials such as rust texture confirmed the
ability of the system to capture variations in roughness, reflectance, and spatial structure.
Future work will focus on the similarity retrieval of 3DGS objects and expanding the dataset

with real materials for broader validation.
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