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Abstract

We propose Mixture-of-Leaders with Teleportation QPSO (MoLT-QPSO), a novel variant of
Quantum-behaved Particle Swarm Optimization (QPSO) aimed at solving large-scale instances of the
Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP). Classical QPSO
guarantees global convergence and has better search ability than standard PSO, but it still tends to lose
diversity and get trapped in local optima . MoLT-QPSO addresses this issue by introducing a multiple
leaders strategy and a teleportation mechanism to maintain search diversity. Additionally, we employ a
problem-specific solution encoding and integrate local search to handle the discrete nature of TSP/CVRP.
In experiments on challenging TSP (up to 11,849 cities) and CVRP (up to 524 customers) benchmarks,
MoLT-QPSO consistently outperformed the standard QPSO, finding shorter routes (closer to known
optima) and improving average solution quality. Notably, MoLT-QPSO achieved near-optimal results
on medium instances (within 0.3—0.5% of optimum) and significantly narrowed the optimality gap on
very large instances compared to basic QPSO. These results demonstrate that MoLT-QPSO effectively
alleviates premature convergence of QPSO and offers a robust approach for large-scale combinatorial
optimization.
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1. Introduction

The Traveling Salesman problem (TSP) and the Capacitated Vehicle Routing Problem
(CVRP) are classic NP-hard combinatorial optimization problems with wide real-world
applications in logistics and routing. TSP asks for the shortest possible tour that visits each city
exactly once and returns to the start, while CVRP extends TSP by assigning customers to
multiple vehicle routes with capacity constraints on each vehicle. Both problems become
intractable to solve exactly as their size grows (the number of possible solutions grows
explosively), so metaheuristic algorithms are often used to find high-quality solutions within
reasonable time. Well-known approaches include local search heuristics (e.g., 2-opt, 3-opt),

genetic algorithms, ant colony optimization, and Particle Swarm Optimization (PSO) variants.
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In particular, PSO and its extensions have drawn attention for large-scale problems due to their
ability to handle high-dimensional search spaces.

Quantum-behaved PSO (QPSO) is a PSO variant inspired by quantum mechanics, which
replaces the classical velocity update with a stochastic "quantum" update towards attractors.
QPSO has fewer parameters and is proven to converge globally under certain conditions.
However, a known issue with the standard QPSO (sometimes called classic QPSO) is that all
particles converge toward a single global best attractor, causing a rapid loss of population
diversity and a tendency to stagnate in suboptimal solutions. In other words, premature
convergence in QPSO is also inevitable without additional diversification strategies. To
overcome this, many PSO variants introduce mechanisms like nonlinear inertia weight
schedules, neighborhood topologies (local leaders instead of one global ieader), random re-
initializations, or hybridization with local search. Building on these ideas, we propose an
improved QPSO-based approach for combinatorial problems that specifically targets the
diversity issue.

Mixture-of-Leaders with Teleportation QPSO (MoLT-QPSO) is our proposed algorithm
designed to enhance QPSO's performance on discrete routing problems. The core idea is to
combine a multiple leader guidance strategy with a teleportation restart mechanism, along with
problem-specific solution representations and local improvements. By using multiple leaders,
the swarm is not guided by just one global best, reducing search bias and helping particles
explore different promising regions. The teleportation mechanism periodically "resets"
stagnating particles to random positions, which helps escape local optima and inject new
genetic material into the population. We also encode TSP/CVRP solutions in a PSO-friendly
way (as continuous "giant tours" that are later split into routes) and incorporate domain-specific
local search (e.g. , 2-opt edge swaps within tours, or swapping customers between routes for
CVRP) to refine solutions. These enhancements allow MoLT-QPSO to maintain search
diversity and intensify the search around good solutions when appropriate. MoLT-QPSO was
experimentally compared against the standard QPSO on benchmark instances of TSP and
CVRP to evaluate its effectiveness. The following sections describe the proposed method

in more detail and present the results of these comparisons.
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2. Proposed Method: MoLT-QPSO

Multiple Leaders (Mixture-of-Leaders): We maintain multiple leader particles instead of one
global best. At certain intervals, the swarm’s $p_best$ solutions are clustered in the continuous
solution space (using a projection to a lower-dimensional feature space to group similar
solutions). Each cluster yields a leader (the best in that cluster). When updating positions, each
particle is randomly assigned one of these leaders as its guiding attractor (rather than everyone
using the single best solution). We apply a weighted selection so that better clusters have higher
chance to guide a particle, but every leader influences some particles. This mixture-of-leaders
approach diversifies guidance: particles explore around different promising solutions in parallel,
which reduces the risk of the entire swarm following a poor gbest. The cluster assignments are
periodically recomputed (e.g., every fixed number of generations) to allow dynamic adaptation
of leaders as the search progresses.

Teleportation (Random Restart): MoLT-QPSO includes a teleportation mechanism to
reintroduce diversity when stagnation is detected. If the global best has not improved for a
specified number of iterations (and the recent improvement rate falls below a small threshold),
a fraction of the particles are “teleported” to new random positions in the search space. This is
analogous to a random restart or injecting new random individuals. We trigger teleportation in
two ways: (1) Event-driven teleportation when stagnation criteria are met (no improvement for
some generations), and (2) Periodic teleportation every fixed interval (e.g., every 300 iterations)
as a preventive measure. The teleportation rate (percentage of particles reset) can be tuned per
problem; in our setting we used a higher rate for TSP than CVRP, reflecting that TSP’s search
space is larger relative to population size, thus requiring more aggressive diversification.
Teleported particles may either be placed uniformly at random or guided by distributing them
around the positions of leaders from other clusters (to exploit information from well-performing
regions while still providing randomness). This mechanism allows the swarm to escape from

any stagnant configuration and continue exploring fresh regions of the solution space.

3. Experimental Results

We evaluated MoLT-QPSO against the standard (basic) QPSO on two TSP instances and
two CVRP instances of varying sizes. The TSP instances are taken from TSPLIB: d2103 (2103
cities, best known tour length ~80,450) and r111849 (11,849 cities, optimal tour length 923,288).

These represent a medium-size anda very large TSP instance, respectively — rl11849 is so large
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that even state-of-the-art exact methods cannot solve it optimally in reasonable time. The CVRP
instances are from the CVRPLIB (Uchoa et al. 2017 benchmarks): X-n101-k25 (100 customers,
vehicle capacity 200, best known solution 27,591 using 25 vehicles) and X-n524-k153 (524
customers, capacity 125, best known 154,593 using 153 vehicles). X-n101-k25 is a well-studied
benchmark of moderate size, while X-n524-k153 is an extremely large and difficult CVRP
example with over 500 customers. For each problem instance, both algorithms were run
multiple times (10 independent runs for the medium instances d2103 and X-n101-k25, and 5
runs for the larger 1111849 and X-n524-k153) to assess solution quality and consistency. Each
run was limited by the same iteration budget (as described above), and all runs were conducted
on the same hardware environment.

Comparison of Results: Table 1 summarizes the performance of basic QPSO versus MoLT-
QPSO on the four benchmark instances. We report the best solution distance found in any run
and the average solution distance over all runs for each algorithm. For fairness, we also list the
gap (%) of those distances relative to the best known solution for the instance (with a lower gap
indicating a better solution). In the CVRP cases, we note the number of vehicles used in the

best solution as well, since minimizing vehicles is also desirable.

Instance 3 Best : Avg
Best Known) Algorithm (Gap) GB update | Vehicles (Gap)
. 81031 e 81083
- PASIOQESD, e T e i (+0.787%)
(80450) 80669 80954
MoLT-QPSO | 5700 49 - (+0.626%)
: 949115 950686
basic QPSO 87 —
+2.797¢ +2.967°
rl11849 G2 iczelb
(923288) 944146 945493
MOLT-QPSO | " )50 122 = (+2.405%)
. 27843 27964
x-n101-k25 a0 +0913%) | 1© 27 (+1.350%)
(27591) ] 27629 27679
MOLT:QBSO | psosgegy |71 26 (+0.321%)
. 157774 159110
x-n524-k153 basic QPSO (+2.058%) | 2 i (+2.145%)
(154593) 157139 157306
MOLT-QPSO | 2/ cumopy | 32 iee (+1.755%)

Table 1: Performance comparison of standard QPSO vs. MoLT-QPSO on TSP and CVRP instances.
Best and average tour lengths over multiple runs are shown, with percentage gap from the best known
solution in parentheses. (For CVRP, the number of vehicles in the best solution is also indicated in
italics.) "
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As seen in Table 1, MoLT-QPSO outperforms the basic QPSO on all test instances in terms
of solution quality. MoLT-QPSO consistently finds a shorter route (lower distance) than basic
QPSO's best, and also yields better average results across runs, indicating improved reliability.
For example, on the medium TSP d2103, basic QPSO’s best tour length was 81,031 (gap
+0.72%), whereas MoLT-QPSO found a tour of length 80,669 (+0.27%), effectively cutting
the gap to the optimum by about 0.5 percentage points. MoLT-QPSO also achieved a much
lower average gap (+0.63% vs +0.79%), demonstrating it can consistently attain high-quality
solutions, not just occasional good runs. Similarly, on the very large TSP rl11849, MoLT-
QPSO improved the best solution gap from +2.80% to +2.26%, and the average from +2.97%
to +2.40%, indicating a substantial improvement on this extremely challenging instance.

In the CVRP instances, the advantage of MoLT-QPSO is also clear. For X-n101-k25, basic
QPSO’s best solution was 27,843 distance (0.91% above the known best) using 27 vehicles,
whereas MoLT-QPSO found 27,629 (+0.14%) using only 26 vehicles. Not only did MoLT-
QPSO get within 0.14% of the optimum distance, but it also managed to service all customers
with one fewer vehicle, which is a meaningful improvement in a routing context. The average
performance on X-n101-k25 was dramatically better: MoLT-QPSO’s average gap was just
+0.32%, compared to +1.35% for basic QPSO, nearly a full percentage point improvement.
This indicates MoLT-QPSO is far more stable and consistently near-optimal on this instance,
highlighting the benefit of its diversity mechanisms and local search integration in avoiding
poor runs. On the largest CVRP X-n524-k153 (524 customers), neither algorithm could find
the optimal solution within the limited iterations (which is expected for such a large problem),
but MoLT-QPSO’s best result (157,139, +1.65%) was notably better than basic QPSO’s best
(157,774, +2.06%). MoLT-QPSO also used fewer vehicles (158 vs 160), again showing better
route optimization. The average gap was improved from ~2.15% to ~1.76%. Although a 1.65%
gap remains from the best known solution, this gap is significantly smaller than that of basic
QPSO, showing that MoLT-QPSO can reach much closer to the best known territory under the
same compute budget.

We also analyzed the search dynamics of both algorithms. MoLT-QPSO recorded many
more global best updates during the runs than basic QPSO, indicating it continued té find
improvements throughout the search instead of stagnating early. For instance, on rl11849,

MoLT-QPSO updated the global best 122 times versus only 87 updates in basic QPSO. On
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d2103 and X-n101-k25, the number of updates in MoLT-QPSO was 1.6-1.9% that of basic
QPSO. This quantitatively confirms that the proposed multi-leader and teleportation
mechanisms enabled the swarm to avoid getting stuck in local optima and keep searching
longer, which translated to better final solutions. Additionally, MoLT-QPSO’s results had
lower variance between runs (as seen by the smaller gap between best and average), reflecting
its improved robustness and repeatability. For example, on X-n101-k25 the worst run of MoLT-
QPSO was still around +0.6% gap, whereas basic QPSO in some runs was above +1.3% gap,
so MoLT-QPSO reliably produces near-optimal outcomes every time.

Overall, the experimental results validate that each component of MoLT-QPSO contributed
to performance gains. The multiple leader strategy allowed parallel exploration of multiple
basins of attraction, the teleportation resets prevented long stagnations, and the local search
hybridization exploited by MoLT-QPSO yielded final refinements that pure QPSO could not
achieve. These led to MoLT-QPSO finding better solutions both in terms of best tour length

and consistency across runs.

4. Conclusion

We presented MoLT-QPSO, an improved QPSO-based metaheuristic that integrates a
mixture-of-leaders strategy and a teleportation mechanism to maintain diversity during the
search, along with tailored solution encoding and local search for discrete problems. The
approach was tested on large-scale TSP and CVRP benchmarks and demonstrated significant
improvements over the standard QPSO in finding high-quality solutions. MoLT-QPSO was
able to reduce the optimality gap by about 0.4-0.8% on average compared to classic QPSO
across all instances, and it consistently produced solutions closer to the known optima. In
addition, it achieved more stable results with lower variance, indicating that the method is
reliable and less prone to being trapped in poor local optima. The incorporation of multiple
leaders and teleportation proved effective in prolonging the exploratory phase of the swarm and
enabling continual improvements, while the hybrid local search ensured fine-grained
optimization of each candidate solution.

The findings suggest that enhancing QPSO's diversity maintenance can yield performance
competitive with problem-specific state-of-the-art algorithms, especially on medium-sized
instances where MoLT-QPSO came within a fraction of a percent of the best known solutions.

Even on very large instances, where obtaining the exact optimum is infeasible, MoLT-QPSO
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substantially closed the gap that was left by the basic QPSO. These results underscore the
potential of MoLT-QPSO as a robust and general framework for tackling complex
combinatorial optimization problems like TSP and VRP.

For future work, further improvements could be explored such as adaptive parameter control
(e.g., dynamically adjusting the number of leader clusters or teleportation frequency based on
the search progress). Additionally, applying MoLT-QPSO to other constrained routing
problems (like VRP variants with time windows or scheduling problems) is an interesting
direction, as the general diversity mechanisms and local search integration used here should be
beneficial in those contexts as well. In summary, MoLT-QPSO effectively mitigates the early
convergence issue of QPSO and opens up new possibilities for applying particle swarm

techniques to large-scale discrete optimization challenges.
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