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Abstract

Estimating high-dimensional volatility matrices is an important challenge in financial
econometrics, particularly for portfolio allocation and systemic risk monitoring. This paper studies
the empirical implementation of a volatility estimator that integrates observable economic factors
with sparsity-induced weak latent components. We outline a sequential estimation procedure and
apply the method to S&P 500 daily returns. The results demonstrate that incorporating mixed-factor
structures into dynamic volatility modeling leads to consistently strong empirical performance.
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1. Introduction

Modeling large volatility matrices is central to financial econometrics. Classical MGARCH models,
extending ARCH (Engle, 1982) and GARCH (Bollerslev, 1986), quickly become infeasible in high
dimensions due to the explosion of parameters. To improve tractability, Bollerslev (1990) introduced
CCC-GARCH, and Engle (2002) proposed DCC-GARCH to allow time-varying correlations, with high-
dimensional nonlinear extensions in Engle et al. (2019).

A complementary line of research employs low-rank factor structures. The PC-GARCH model of Ding
(1994) and its O-GARCH and GO-GARCH variants (Alexander, 2000;Van der Weide, 2002) capture co-
volatility through principal components. Subsequent developments include Full-factor GARCH (Vrontos
et al., 2003), asymptotic analysis (Hafner and Preminger, 2009), and DCC-Factor-GARCH (Zhang and
Chan, 2009). More recent studies incorporate observable-factor GARCH with sparse residual dependence
(Li et al., 2022a,b), while asset-pricing evidence highlights omitted-variable concerns when relying solely
on observable factors (Feng et al., 2020; Giglio and Xiu, 2021). Residual-based latent-factor extraction (Shi
et al., 2022) mitigates this to some degree, though empirical evidence shows that many residual factors are
weak and diverge slowly with cross-sectional size (Dai et al., 2024).

Motivated by these findings, we propose a DCC-embedded mixed-factor volatility model that
integrates observable factors, sparsity-induced weak latent factors (Uematsu and Yamagata, 2022), and a
dynamically evolving idiosyncratic component. By embedding DCC into all components and allowing for
weak latent structures, the framework addresses information loss from unobservable risks and the
limitations of static or purely observable-factor specifications.

2. The Estimation Framework .

We consider an N-dimensional vector of asset returns generated by the mixed-factor structure
Ve =Axi +u;, u,=Bfetey,
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where x; denotes observable economic factors, i means latent statistical factors, and e; denotes
idiosyncratic errors. 4 and B represent the factor loadings. The key innovation lies in explicitly modeling
the volatilities of all components through a sequential and numerically stable estimation procedure.

2.1 Step 1: Filtering Observable Components

We first isolate variation driven by known factors. Standard asset-pricing factors (e.g., Fama—French)
are modeled through a two-stage procedure: univariate GARCH for conditional variances and DCC-
GARCH for dynamic correlations. Regressing asset returns on these observable factors yields loadings 4
and residuals

ﬁ?':yt —Axt'

which contain remaining common factors and idiosyncratic noise. This step produces the observable-
factor volatility component A I, (t) A’.

2.2 Step 2: Extraction of Latent Factors

We extract remaining common factors from #;using the Sparse Orthogonal Factor Regression (SOFAR)
method of Uematsu et al. (2019), which is well suited to identifying weak latent factors that influence
only subsets of assets. The extracted latent factors £, are then modeled by a secondary DCC specification,
yielding the latent-factor volatility component B f}(t) B'.

2.3 Step 3: Capturing Idiosyncratic Errors

The idiosyncratic component is obtained after removing observable and latent factors. The third DCC
model is then fitted to €;, with the unconditional covariance estimated via a sparse technique, yielding the
idiosyncratic volatility matrix Z, (t). The final estimated volatility matrix of y; is

£, = AT, (DA + B () B’ + Z.(0).

3. Empirical Studies

We use daily returns of S&P 500 constituents from April 2002 to April 2022. After data alignment and
cleaning, we conduct a real-time portfolio allocation based on a monthly rolling-window procedure:
model parameters are estimated using the most recent 252 trading days (about one year trading days), the
volatility matrix f‘.; (t + 1) isthen forecasted, and the Minimum Variance Portfolio (MVP) is constructed
under the investment constraint ),; w; = 1 using f;(t + 1), where w; is the unknown parameter
representing the portfolio share of asset i. Across the sample, the portfolio constructed by our proposed
method consistently achieves lower risk compared with several benchmark alternatives.
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4. Conclusion Remarks

We propose a Factor-GARCH framework embedding DCC for both observable and latent factors,
coupled with a sparse, dynamically evolving idiosyncratic component, to model the volatility matrices of
high dimensional data. The approach mitigates omitted variable and singularity issues and performs well
in simulations and empirical MVP applications. Future work may include: (i) richer GARCH formulations
(T-/GJR-/E-GARCH) and heavy tailed QMLE (Fan et al., 2014); (ii) time-varying loadings for observable
and latent factors; and (iii) applications to high-dimensional connectedness and risk forecasting.
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particularly from information science, engineering, and computational perspectives, to further refine our
method. This proposal outlines the computational framework and practical application logic, while the
rigorous theoretical foundations, model descriptions, and comprehensive numerical analyses are detailed
in a separate full paper currently under review at a specialized finance journal.



