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Abstract

The Generalized Bass Diffusion Model (GBDM) offers a flexible way to forecast electric vehicle (EV)
adoption in China. Unlike the traditional Bass model, which assumes a fixed market size and smooth growth,
GBDM lets the market potential change over time as policies, charging infrastructure, and technology
evolve. This is crucial in a fast-moving market shaped by shifting subsidies, expanding charging networks,
and rapid battery improvements. By adjusting to these dynamics, GBDM can capture both rapid surges and
temporary slowdowns, providing a closer fit to real sales data than models that assume steady growth. It
also allows scenario testing under different policy conditions. Still, the model has limits: its changing
parameters describe what happens but not always why. Factors like overcapacity, price competition, and
declining product quality arise from firm-level behavior, which lies beyond the model’s structure. For this
reason, GBDM works better when combined with firm theory and behavioral analysis. Together, they
connect overall market diffusion with company strategies and consumer attitudes, offering a more complete

understanding of China’s evolving EV market.

1. Introduction

Forecasting China’s electric vehicle market is challenging because policy, technology, and
infrastructure all change quickly. Traditional diffusion models, such as the Bass model, assume a
stable market potential and uniform consumer behavior. These assumptions work in mature
markets but fail to capture China’s rapid shifts in subsidies, battery range, and charging networks.
The GBDM addresses this problem by allowing market potential, m(t), to change over time. This
flexibility makes it possible to model sudden policy changes, technology breakthroughs, or
infrastructure expansion. As a result, GBDM provides more accurate and policy-sensitive
forecasts than standard logistic or Gompertz models. However, diffusion patterns alone cannot
explain everything. Firm-level behavior—such as capacity expansion, pricing competition, and
quality issues—also affects adoption by shaping consumer trust and market stability. Integrating
firm theory into GBDM helps explain these effects by linking market diffusion with company
actions and consumer responses. This approach makes GBDM not only a forecasting tool but also
a framework for understanding how technology, firms, and policy interact in China’s evolving
EV market.
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2. Literature Review

Debates about the diffusion of electric vehicles (EVs) in China have been widely ranged,
although the emphasis across studies has not always been consistent. Early contributions tended
to privilege consumer-oriented explanations, highlighting concerns over driving range,
government subsidies, and the convenience of charging (Rezvani et al., 2015; Liao et al., 2017).
Over time, attentions shifted toward institutional and regulatory dynamics, with scholars
examining how policy frameworks, subsidy phase-outs, and instruments such as carbon taxation
reshape adoption trajectories (Chen et al., 2023; Liu et al., 2024; Tang et al., 2024). These suggest
that neither consumer-oriented reasons nor government policies alone is sufficient. It might be
the interaction between individual preferences and structural incentives appears to be essential.

Several research have been done to illustrate this hypothesis. One emphasized the importance
of infrastructure, showing that the roll-out of charging networks not only complements but also
alters consumer expectations of convenience and accessibility (Yue et al., 2021; Elahe et al.,
2022). Another drew from political economy and industrial policy perspectives, emphasizes how
coordinated government action, sector complementarities, and evolving demand structures have
collectively shaped market (Gomes et al., 2023). Such accounts argue that the Chinese EV sector
must be interpreted less as a simple aggregate of consumer choices than as part of a broader
project of industrial strategy by involving government, OEMs and individuals.

However, only few studies have been done on diffusion models directly. Li et al. (2017), for
example, modified the Bass model to include charging infrastructure growth, but their forecasts
underestimated sales momentum after 2020. A more recent attempt by Fan et al. (2025)
incorporated cost differentials and employed genetic algorithms; however, their framework still
fell short in capturing the disruptive influence of policy shocks and the resilience of demand in
the post-subsidy era. Other attempts to bypass this limitation have drawn on game theory
approaches, which show the strategic interdependence of government, firms, and consumers.
Work by Chen et al. (2023), Liu et al. (2024), and Tang et al. (2024) illustrates how coordinated
or conflicting strategies among these actors can magnify or weaken policy effectiveness. Yet these
models, while valuable for understanding incentives, often lack of the empirical tractability
needed for long-term forecasting the EV sales volume when comparing with GBDM approaches.

Although diffusion models are widely used to study how EVs spread through the market,
more advanced investigation of these models are still not enough. Moreover, these models often
overlook how companies' actions affect EV adoption. In study, I try to address the gap by
introducing a new approach, which a GBDM approach that includes two important factors—
consumer anxiety and barriers created by firms. The aim is to combine data analysis with business

theory to better understand and predict how EVs are adopted in China market.



INTEGRATING FIRM THEORY AND THE GENERALIZED BASS DIFFUSION MODEL :

3. Materials and Methods

3.1 Methodology
3.1.1 Diffusion Models in EV Forecasting

Diffusion models have long served as foundational tools for analyzing the spread of new
technologies, offering a formalized structure to trace how innovations permeate social systems.
Among these, the Bass model (Bass, 1969) remains particularly influential, often cited as a
paradigmatic framework within the literature on innovation adoption, such as in China market
EV sales. The model distinguishes between two principal mechanisms of diffusion: One is
innovation effects, which capture the influence of external incentives such as government
subsidies, number plate restrictions or market campaigns by car makers; the other is imitation
effects, which reflect interpersonal dynamics including influence from observing and following
the others’ choices, benefits from fuel prices, and so on. Although the model itself is appealing
because of its clear structure, its assumptions that have a fixed number of potential buyers and
assuming all consumers behave the same ways, have been questioned especially in fast-increasing
market such as the China’s EV market. In this market, the adoption patterns are influenced not
just by what consumers want, but also by strong government policies and business strategies by
car makers. To improve the limitations of the Bass model, later studies have developed more
flexible versions that let important factors change over time. These updated models aim to better
match real world situations by including time-based factors. The GBDM is part of a wider effort
to improve and update traditional models. It allows the market potential to change over time based
external factors, such as improvement of technologies, expansion of charging stations and the
removal of government subsidies. This makes GBDM a more flexible way to understand how
people adopt EVs. In fast increasing markets like China EV, where rules and economic conditions
can shift quickly, consumers’ needs are adapting quickly, models that assume everything stays
the same may miss important turning points in adoption trends.

However, despite its promise, GBDM remains underutilized in the mainstream EV adoption
literature. Some scholars have raised concerns regarding its parameter complexity and data
demands, while others argue that its integration of firm level dynamics, especially regarding
strategic behaviors and market signals remains insufficient. These opinions brought a broader
debate about the appropriate balance between model parsimony and empirical fidelity. So, it is
necessary to find an appropriate GBDM to better understand such a broader behavioral and
institutional framework, holds potentials not just for better forecasting, but for deeper explanatory
insight.

3.1.2 Limitations of the Traditional Bass Model
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The vanilla Bass model is not without merits, but its rigid assumptions hinder its adoption to
the China EV market. Fixed market potential implies that eventual saturation is determined from
the outset, ignoring the possibility that policy interventions, technological advances expand the
scope of potential adopters over time. Moreover, the model treats consumers as homogeneous,
disregarding heterogeneity in attitudes toward driving range, cost, technology improvement and
brand reputation, etc. In constantly changing policy environments, these simplifications generate
misleading predictions: adoption is either smoothed into gradual S-curves or fails to capture
sudden surges induced by external factors mandates. Limitations include homogeneous
assumptions, fixed parameters, lack of economic variables, and aggregate focus without micro-

foundations, making it unsuitable for China's dynamic EV market.

3.1.3 Advantages of the Generalized Bass Diffusion Model (GBDM)

GBDM introduces several modifications to address these shortcomings. Market potential is
dynamic, parameterized in ways that reflect infrastructure density, driving range, or government
policies. The model also adapted itself to scenario analysis, allowing researchers to simulate
optimistic, baseline, and pessimistic futures depending on policy or technological assumptions
with parameters representing the phenomenon. Moreover, this flexibility preserves the
interpretability of the Bass model framework while extending its empirical usage.

In this study, the GBDM is extended by adding an anxiety index to account for consumer
concerns about driving range and the availability of charging stations. This index acts as a
suppressive factor—reducing the likelihood of adoption when anxiety is high. By including this

dimension, the model better reflects how consumer worries can slow the spread of EVs.

3.1.4 Parameter Definition and Implementation

To estimate the model’s parameters, nonlinear least squares (NLS) was used, which is a
common technique for fitting diffusion models. To improve accuracy and avoid getting stuck in
local minimum, this method was supported by genetic algorithm (GA). The model is using data
from 2015 to 2024, including EV sales (annual data), Cumulative EV sales, Cumulative Charging
Infrastructure, and the Weighted Average Driving Range (achieved from top 20 best-selling

models).
The Bass Model:
GBDM modifies the model as:
dF(t
—F(t_) =[p+q-F(t)][1 - F(t)] -nomalized anxiety(t)

The anxiety index is defined as:

anxiety(t) = 500/range(t) + 1/density(t))
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where range(t) denotes Weighed Average Driving Range and density(t) denotes cumulated
charging infrastructure. This formulation reflects the intuition that both technological
improvements and charging infrastructure density release consumer hesitation. Here the 500 used
in the anxiety calculation is considering that the normal driving range of a gasoline vehicle is
around 500km with full tank gas fueled. If the EV range can exceed 500km with full charged
battery, it will release the consumer from anxiety of range. On the other hand, we can easily
understand that the more density, the less consumer anxiety.

Normalized anxiety(t) constrains the index to values between 0 and 1, facilitating integration
into the GBDM structure. Normalization is done according to below formula:

anxiety(t) — min(anxiety(t))
max(anxiety(t)) — min(anxiety(t))

normalized anxiety(t) =

Data sources include EV sales for each year, Cumulative EV sales, Cumulative Charging
Infrastructure, and Weighted Average Driving Range (data from year 2015 - 2024). Mean squared
error is minimized and genetic algorithms (GA) for robustness is used. Explanation of parameters:
® EV sales: Means the EV sold in that year

® Cumulative EV sales: denotes the cumulative EV sales volume until that year.

® Cumulative Charging Infrastructure: denotes the cumulative charging infrastructure until

that year.
® The Weighted Average Driving Range (WADR) is defined as follows:
n
(R - S)
WADR, = —‘——n—‘s—‘—
=1 51
Where,

WADR:: the Weighted Average Driving Range in year t, here the range is considered only
BEV (Battery Electric Vehicles), but not PHEV, although it is also calculated as NEV. t is
from year 2015 to year 2024.
Ri: The range of model i (in km). This can be obtained from manufacturer specifications or
test reports (such as the CLTC standard, commonly used in China).
Si: The sales volume of model i (in units). This serves as the weight, ensuring that high-sales
models dominate the average.
n=20 (top 20 models ranked by sales volume are used in the measurement).
The weighted average range was calculated by selecting the top 20 selling models in each year.
This means that each year we will use the top 20 best-selling models’ sales volume and driving
range data to calculate the Weighted Average Driving Range. Therefore, it will ensure the

dominant models exert appropriate influence in the measurement. Charging density data were
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obtained from national and industry reports, with verification against multiple statistical

yearbooks to reduce the risk of measurement bias.

3.2 Materials

EV sales and Cumulative EV sales data are from marklines database. Cumulative Charging
Infrastructure data is from national and industry reports. Weighted Average Driving Range data

is calculated by the top20 best-selling vehicles each year. Raw data is from marklines database.

Cumulative
- EV Salesin  Cumulative EV Charging Weighted Average normalized
ear
units Sales in units Infrastructure = Driving Range in km Anxiety(t)
density(t) in units

2015 209,416 296,999 115,000 172.53 1.0000
2016 485,825 782,824 275,000 234.79 0.6082
2017 679,179 1,462,003 445,700 197.41 0.8138
2018 1,222,682 2,684,685 777,000 272.76 0.4571
2019 1,256,657 3,941,342 1,219,000 394.71 0.1684
2020 1,484,449 5,425,791 1,681,000 425.87 0.1211
2021 3,952,969 9,378,760 2,617,000 429.71 0.1158
2022 7,465,252 16,844,012 5,222,000 462.93 0.0732
2023 9,973,610 26,817,622 8,950,000 533.91 0.0000
2024 13,241,038 40,058,600 12,818,000 528.43 0.0050

Table 1: Materials used in the analysis
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4. Data Analysis

4.1 GBDM Model Formula and Fitting

The discrete GBDM is:
N({t—-1) ' .
n(t)=[p+gq 'W] -(m(t) = N(t—1))- (1 — B -nomarlized anxiety(t))

approximately 800 EV models in China but the top 20 models ranked by sales volume are

considered. Each parameter is defined as follows,

p is coefficient of innovation (external influence)

q is coefficient of imitation (internal influence)

m(t) is market potential at time t

N(t-1) is cumulative adopters before t

B - normalized anxiety(t) is psychological resistance (reduces adoption)

n(t) number of new adopters in year t

e By using NLS and GA method, we can calculate the p = 0.000001, q = 0.7828, p =
0.1072, m(t) = 72,694,383 units

e Fit Quality: R? = 0.98; RMSE(Root Mean Square Error) = 624,622 units

which means that the model’s annual prediction error for EV sales from 2015 to 2024,
averaged about 620,000 units per year. Considering that the actual sales in 2024 exceeded
13 million vehicles, this error rate is less than 5%, indicating that the model’s overall fit
is very good.

e Based on the parameters achieved above, we can easily estimate n(t) of 2025, which is
14,147,802 units. By using this estimation, we can easily check the fittings with 2025
January to August, China market NEV sales volume is 9.62 million units, the whole year

prediction is around it is quite aligning with GBDM prediction baseline.
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5. Results and Discussion

The estimation results indicate that the Generalized Bass Diffusion Model (GBDM), when
enhanced with a mileage anxiety index, captures the trajectory of EV adoption in China with a
high degree of accuracy. The fitted parameters reveal a diffusion process that was initially
constrained by consumer hesitation and policy uncertainty but subsequently accelerated through

imitation effects once technological and infrastructural thresholds were crossed.

5.1 Key Findings

Several features of the results warrant attention. First, the low innovation coefficient, p =
0.000001, underscores that early adoption was not primarily driven by spontaneous consumer
experimentation. Instead, it was highly dependent on external stimuli such as purchase subsidies,
license plate restrictions, and favorable tax policies. This aligns with earlier observations by
Ouyang et al. (2020) and Lu et al. (2020), who emphasized the catalytic role of government
incentives in stimulating initial demand.

Second, the imitation coefficient, g = (.7828, suggests a strong contagion effect, consistent
with diffusion literature that highlights the importance of peer-to-peer influence once a product
reaches critical visibility. In China’s EV market, this dynamic appears to have been amplified by
rising brand recognition and social signaling, as noted by Buhmann and Criado (2023), where EV
ownership increasingly conveys status and alignment with environmental values.

The estimated anxiety coefficient (§ = 0.1072) indicates that consumer concerns about range
and charging access still had a noticeable slowing effect on electric vehicle adoption. Over time,
as the average driving range improved and charging stations became more common, the
normalized anxiety index fell from about 1.0 in 2015 to nearly zero by 2024. This steady decline

suggests that technological progress and infrastructure investment have helped reduce
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psychological resistance among potential buyers. These results support what many policy reports
have suggested: improving charging convenience and battery performance does more than make
electric cars practical—it changes how people feel about them. Still, the link between anxiety and
adoption should be interpreted with care. Social factors, media coverage, and government
incentives may also shape how consumers perceive risk. In this sense, p reflects not a fixed
psychological constant but a moving indicator of how confidence grows as technology and policy

evolve together.

5.2 Policy Implications and Limitations

From a policy point of view, the results suggest that building and maintaining charging
infrastructure is still the most effective way to support long-term growth. Better infrastructure
directly lowers consumer anxiety and encourages more people to follow others in adopting
electric vehicles. In addition, good quality control and clear information for consumers are just as
important as financial subsidies for keeping public confidence high. Without these measures,
price competition caused by overproduction and declining product quality could weaken trust and
slow down market growth. The analysis is not without limitations. The anxiety index, while
conceptually plausible, simplifies complex consumer perceptions into a single metric and relies
on proxies such as average range and charging density. Furthermore, the model does not yet
incorporate export markets, second-hand vehicle sales, or regional disparities, all of which may
alter adoption dynamics in the medium term. These limitations suggest avenues for further
refinement, including multi-level modeling that integrates regional heterogeneity or game-

theoretic elements capturing firm-government interactions.
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