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Abstract

In previous research, I classified the 3D polyhedra and the 2D tessellations of the plane according to class
dependent on their symmetry, and organized them into a 3-frequency polar zonahedral schema, while identifying
the constituent sequences through which the 2D and 3D polytopes might be considered to evolve from simple VP
to complex GR, in combination with a rhombic schema for their progression of faces. Here, I further develop and
clarify the order of the periodic all-space-filling polyhedral arrays (the honeycombs) by addressing the separation
and progression of the polyhedra in the honeycombs to better comprehend their overall morphology.
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1. Introduction

My classification of the polyhedra [1—7] includes in each class 8 Primary Polyhedra (PP): the Verticial
Polytope (VP) simplex, +ve & —ve Polar (PL*/7), QuasiRegular (QR), +ve & —ve truncated polar
(TP*/7), Small Rhombic QR (SR), and Great Rhombic QR (GR). The 3f polar zonahedral (PZs3)
schema of the polyhedra generalizes their faces to encompass the surface polytopes (PT's) of which they
are composed, so a polyhedron can be considered in terms of its vertices (VT's), edges (EGs), and faces
(Fs). Certain of these VTs and EGs are principial—those oriented orthogonal to and coaxial with the
axes of symmetry; the rest are incidental, like the VT's and EGs of the SQs of the SRCO, and of the
hexagons (HXs) and octagons (OGs) of the GRCO, respectively; any PP can be considered to consist
of its principial +ve, neutral (ntrl), or —ve surface PT’s. In the evolution of form VP — GR in six paths
(e.g., VP— CB—SR—GR) [6: fig. 5], each PT develops according to the progression of faces (PoF)
schema. Separation of faces (SoF) of these PPs uniquely determines their PZ3 schema morphology.

In this paper, I develop that research by applying the polyhedral SoF and PoF to further investigate
the sequences of polyhedra in the honeycombs, by considering the analogous Separation of Polyhedra
(SoP), and Progression of Polyhedra (PoP), comparing their morphology with that of the polyhedra.
This paper, the fourth in a series, is best read in conjunction with a companion paper on the Class III
honeycombs that is well illustrated [8], both being available for download as color PDFs.

Overview

The honeycombs consist of polytopes (PT's) that can first be classified into Primary elements that form
regular arrays, and the Neutral polyTopes (NT's) that mediate them, then by class according to their
formal spatial distribution. Most constitute the regular and semi-regular polyhedra; but in my analysis
they also include VPs, and as NT's, the regular Octagonal Prism (OP); and several virtual elements that
include the Neutral Vertex (NX), Neutral Square (NS), Neutral Rhomb (NR; rotated SQ), and Neutral
Octagon (NO), also the Neutral Edge (NE); together with their respective projected forms, the Vertex
Prism (XP), Square Prism (SP), Rhombic Prism (RP; rotated SP), and Octagonal Prism (OP), also the
Edge Prism (EP); these are considered the base PT's, and those formed by their prismatic projection in
the various SoPs, respectively [8: table II]. NT's have a unique main axis that corresponds to one of the
XYZ axes, as well as minor axes, while the Primary elements have regular polyaxial symmetry,
corresponding to the 8 members of the Class IT of the Polyhedra of {2,3,4} symmetry; and the simplex
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Verticial Polytope (VP;) and the polar and truncated tetrahedral (T) members of Class I of {2,3,3}
symmetry of the 2 polar tetrahedra (TH*/™), and 2 truncated tetrahedra (TT*/~), where the polarity of
the TT is that of the TH that it is truncated from. Class II of the Polyhedra consists of the Verticial
Polytope (VP;;) simplex, Octahedron (OH), Cube (CB), Truncated Octahedron (T0), Truncated Cube
(TC), Cuboctahedron (C0O), Small Rhombic Cuboctahedron (SRC0Q), and Great Rhombic
Cuboctahedron (GRCO). All elements have unit edge length, except the simplex VP and its virtual
VT*/%/=s. To trace the evolution of form from honeycomb to related honeycomb by the SoP in Classes
IT and IIT of the Honeycombs, I thus include certain VT's, EGs, and F's as NTs, and the 3D prism (OP).

Figure 1 shows that the PPs in the honeycombs are then located centered on the nodes of two
primary cubic lattices (PCLs; in Class III), or on the nodes of their respective pair of primary tetrahedral
lattices (PTLs; in Classes I and II). In general, the neutral elements of any honeycomb are of two kinds
(though if P;=P,, these are the same), have a major axis parallel to one of the XYZ axes (so appear in
three orientations according to their XYZ axis), and are coaxial to the edges of the reference cubic
lattices, but are not in general located at the mid-point of their edges, except where the two PPs they
mediate are of the same kind. According to the spatial pattern of the PPs on the cubic or tetrahedral
lattices, just three classes can be identified: Class I has a solitary honeycomb of +ve and —ve TH's and
TTs (although in principle, the 4 Class III honeycombs [GR*GR], [TOxTO0], [CB*CB], and [VPxVP]
where PP, = PP,, might, if colored, also be included). Class II has four honeycombs, two of which
include the +ve and —ve TH's, the other two including the +ve and —ve TTs. Class III by my
classification consists of 4 clusters of 4 honeycombs (Fig. 2), with two clusters being reflections of one
another, and 2 clusters being self-reflective, so number 10 kinds in all, including the simplex [VPxVP]
that consists of a single point. By my schema, things need not be what they appear: e.g., the common
lattice of cubes could be a [CBxVP], [VPxCB], or [CB*xCB] honeycomb, depending on the coloring of
the CBs. My classification is, to the best of my ability, rigorous, and strongly related to my treatment of
the (regular and semiregular) polyyhedra, as elsewhere exhaustively detailed. These explorations
suggest a formal schema to represent the morphology of the honeycombs that I intend to later develop.

The formal structure of the three classes of honeycombs

The locations of the various PT's vary according to the class of their honeycomb, and their status as +ve
or —ve PPs that are in juxtaposition to one another, or the Neutral PT's (NT's) that mediate them.
Consider two primary cubic lattices (PCLs), where the nodes of one PCL lie at the centers of the cubes
of the other PCL and vice versa (Fig. 1). The two can be designated PCL, and PCL,, wlog. Either PCL
can be differentiated into two primary tetrahedral lattices (PTL* and PTL™); the geometry of each of
these corresponds to that of the well-known octet truss popularized by R. Buckminster Fuller
([VTxOH], appearing as TH and OH. Each cube of a PCL can be differentiated into two tetrahedra as
in the Stella Octangular, each belonging to one of the 2 PTLs of that PCL. Simply put, the nodes of the
orthogonal axes of the edges of the cube of the PCL alternate to provide the nodes of its two PTLs.
Primary Polytopes (PPs) (of Class II of the Polyhedra) of the honeycombs are then disposed
concentric with the nodes of the PCLs, and inherently of the PTLs. Three classes of honeycombs are
identified. Firstly, in Class III of the Honeycombs, one PCL has PP; at its nodes, while the other PCL
has PP, at its nodes (with or without intermediary (neutral) polyhedra). This means that the two PTLs
of one PCL have the same PP at their nodes, while the other two have a different PP at their nodes, and
their NTs, virtual or real, then differ. In some cases, PP; = PP,, so both PCLs, and hence all 4 PTLs,
have the same PP at each node; with or without intermediary (neutral) polyhedra, and their NT's are the
same. Secondly, in Class IT of the Honeycombs, the two PTLs of one PCL have different PPs (of Class
H, of the Polyhedra); the two PTLs of the other PCL then have either +ve and —ve TH at their
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Fig. 1: Morphology of the three Classes of Honeycombs. Top: Class I of the Honeycombs. Center panel shows
PTL} and PTL] of PCL, alternate TT* and TH™ PPs, interspersed with PTL} and PTL; of PCL, alternating
TT~ and TH* PPs. Outliers show close packing of (irregular) octahedral cluster of square horizontal array and
center vertical PPs above and below with (50 and 100) % opacity (top and bottom); orthogonal sequences on XYZ

axes from a core TT (middle); similar arrangements could be drawn centered on either TH* or TH™. Lower Right:
Class II of the Honeycombs showing PTL} and PTL] of PCL, alternate PPs of Class II of the Polyhedra (VP;
OH, CO, CB;TO, SR, TC; GR), interspersed with PTL} and PTL; of PCL,, which alternate with T*!=s, i.e., +ve
& —ve THs, or +ve & —ve TTs. Lower Left: Class II1 of the Honeycombs showing PCL, consists of one PP of
Class II of the Polyhedra, interspersed with PCL, also a PP of Class II. In some cases, the PPs of PCL, and PCL,
are the same, e.g., the cubic array (contracted [CBxVP] or expanded [CB*CB]), [TOxTO0], colored by PCL.

alternating nodes, or have +ve and —ve TT, respectively; these do not have neutral intermediary
polyhedra, but are considered to have virtual NT's of VT, EG, or F of adjoining PPs or adjoining T's
(TH or TT). Thirdly, in Class I of the honeycombs, all 4 PTLs have different polyhedra at their nodes,
and only one case appears to exist, of TH* and TT~ for PTLY and PTL;, and TT* and TH™ for PTL}
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and PTL3, respectively. I treat the classes in reverse order of III to I, Class III being the easiest to
comprehend, while Class I the most sublime. Class I1I juxtaposes complementary elements; Class II
juxtaposes juxtapositions of these; Class I appears to juxtapose the four PTLs in four-fold manner.

Findings

Class ITI of the honeycombs exhibits similar structure in the separation and progression of polyhedra,
to the separation and the progression of faces of the polyhedra and tilings described in my earlier papers.
In both cases—honeycomb and polyhedron—that separation acts as the main driver of the evolution of
form from simplicity to complexity. Typically, honeycomb and polyhedron can be regarded as being
composed of +ve, ntrl, and —ve polyhedra, and faces, respectively. In both cases, the neutral polytopes
(NTs) are of two kinds, correlated with PP; and PP, in the honeycombs, and with the +ve and —ve
polyhedra, respectively. PPs pair according to their V3 compatibility of faces, VP, CB, TO, and GR
being self-compatible. NT separates pairs of identical primary elements on its main (XYZ) axis, while
separating pairs of the complementary primaries on one of its minor axes. NT's evolve by the PoF.
The honeycombs in clusters of 4 evolve from a contracted state, where both PPs of the source
honeycomb are contracted, taking either of two paths to equivalent hybrid honeycombs, where PP; or
PP, is expanded, while PP, or PP; remains contracted but morphs to PP3 or PP,, to a goal honeycomb
where both PPs are expanded. This closely parallels the progression of faces in the polyhedron, e.g.,
from VT to +/— EG to SQ, or VT to SQ / RS to OG. In each case, one of the PP pair separates; the other
morphs while remaining contracted or expanded. In the SoF s of the polyhedra, these rhombic
progressions combine to form the PZ; schema; the Class III honeycombs form a rhomb of rhombic
clusters [8: fig. 2]. In both cases, the separation of primary PT's is by unit distance, so separating PT's
(PPs or Fs) move from adjoining (contracted, i.e., contiguous, sharing a common VT, EG, or F), to
adjacent (expanded). In Class III honeycombs, the other non-separating PP morphs, as the NT projects
to a prism; for the polyhedra, as one of +ve, ntrl, or —ve Fs separate, the other two morph by the PoF.
A significant difference is that while the SoF in the polyhedra occurs on the +ve, ntrl, and —ve axes
(i.e., of Fs or surface PTs), the separation of polyhedra in the honeycombs only occurs on the V1 axes
(the primary axes of the lattice). In the polyhedra, each SoF occurs just once, and only one per step in
the 3-step progression from VP to GR, allowing 6 different progressions. In the honeycombs, PP; and
PP, only separate once, but not at the same time; as PP; separates, PP, morphs to PP,, and vice versa.
Class II of the honeycombs consists of four honeycombs, and forms a mixed rhomb, where one pair
of parallel edges of the rhomb denote the separation of T*/~’s and concomitant morphing of PPs, while
the other pair denote the truncation of TH*/~’s to TT*+/~’s and concomitant morphing of PPs. PPs pair
according to their V1 compatibility of faces: VT:0H, CB:SR, CO:TO, TC:GR. The +ve and —ve THs or
TTs separate on the V1 axes, while PP; & PP, morph to PP; & PP,.In both cases, the T's separate from
adjoining—sharing a NE, to adjacent—mediated by an EP on one of its minor axes. As this occurs,
PP, and PP, evolve to PP; and PP, which are mediated by the same EP on its main (orthogonal) axis.
Class I with only one member would appear to allow no sequences.

Conclusion

Deeply akin to the SoF in the Polyhedra, the SoP in the Honeycombs appears to be the driving force in
the development of spatial form from simple to complex. Virtual NT's that mediate adjoining PP;s
develop into regular prisms that separate adjacent PP, s on \1 axes. In Class I1I, this formal development
permeates the honeycombs; the SoP of one of the two PPs is always accompanied by a morphing of its
3 complementary PP, which develops according to a PoP, akin to the PoF in the polyhedra.
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Fig. 2: Class III SoPs and PoPs of the PPs of the honeycombs, organized according to the SoFs and PoFs
of the Class II Polyhedra. Top central schema shows the PoF's of the Class II Polyhedra, while central cluster of
8 PPs shows the SoF's of the Class II Polyhedra in the cubic PZ5 schema consisting of lower and upper rhombs;
—ve, ntrl, and +ve faces separate in rising left, vertically, and right, respectively (arrowed). These schema are
applied to the PPs of the honeycombs in the four corner clusters of 8 honeycombs, respectively. Key shows that
for each square, top left/ bottom right text of the four corner clusters identify PP,/PP,, respectively, hence total
16 (Class IIT) honeycombs [PP; xPP,], in the left/right pair of clusters, respectively (disallowing reflections, 10
honeycombs); honeycombs correspond left/right, but are centered on —ve/+ve PP (PP,/PP;), respectively. In each
square, top right text shows Primary, Secondary, or Tertiary (P,S,T) level of honeycomb; bottom right text shows
Contracted, Hybrid, or Expanded (C,H,X) status of honeycomb. Closest outer PP of the outer 8 PPs of each
honeycomb is omitted for clarity, as are the 3D NTs, while reinforcing the importance of the 3 axial PP,<>PP,
matings. Grey squares show the lower rhomb of the SoF; bordered white squares show the upper rhomb. SoP of
PP, and PoP of PP, are shown vertically from grey square to white square immediately above it, from d = 0 to
1, while SoP of PP, and PoP of PP, are shown from square to above right square, as per corner arrows. Left/right
clusters are shown centered on the —ve/+ve cyan/magenta progressing PP, /,, respectively. Each corner cluster of
8 rectangles shows the SoP of PP, and PoP of PP,, or vice versa.

In Class II, two sequences of the SoP can be found as either TH =g or TTH 7% separate on V1 axes,
while V2 complementary PP; and PP, both morph into more complex \1 complementary PP5s and
PP,s. It would appear that Class I of only 1 honeycomb cannot allow sequences without breaking the
constraint of all-space-filling periodicity. These regularities are addressed in greater detail in the
companion paper that examines Class III of the Honeycombs [8], to be published in the December 2025
issue of Information journal, and available to download as a color PDF from Information or my website;
and in intended subsequent papers. The morphologies are easier to appreciate from the illustrations.
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Fig. 3. Pairings of Class II polyhedra by V1, V2, V3 axes in the Class II honeycombs [VPxOH], [CB*SR],
[COXTO], [TCxGR] at bottom, left, right, and top, respectively, of each rhomb of 4 hexagons, with NT named
and indicated between PP, and PP,, and exploded when virtual. Schema of Class II nodes, top right. [TCxGR]
honeycomb PTLs (PPs, bottom right; TT's and EPs, top left); combined at 50 % opacity, bottom left.
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