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Abstract

The cubic schema—considered as a 3-frequency polar zonahedron (PZ3)—based on the separation of
faces (SoF) to account for the order of the regular and semi-regular polyhedra and tessellations that I
have previously presented, unveils within each symmetry class a three-fold symmetry by gender of the
Primary Polytopes (PPs). This 3-fold symmetry appears remarkably pervasive, rather than an artifact
of the schema, and to logically precede the bilaterality of the developed schema. Analysis of the
topological relationship of proximal, like principial faces allows matrices to be developed of their
relationship according to the SoF, for separation from contiguous (adjoining; d=0) to separated
(adjacent; d=1), for the three gendered cases of negative (—ve), neutral (ntrl), and positive (+ve) faces.
These three cases can be considered simultaneously, while horizontal rotation of the 2.5D PZ3 schema
about the primary Verticial Polytope—Great Rhomb (VP—GR) vertical axis at 2/3 intervals can provide
convenient snapshots of the corresponding pairs of the separating facial PTs (d=0 to d=1) by gender. In
this paper, I reformulate my previous | facial convention to a|o, to newly define a and © as the +ve
and —ve faces, respectively, of the SR (Class II: SRCO), and for the ntrl faces, the edges of the PL™ and
PL* (Class II: CB and OH), respectively. Together with the (Vesica Pisces) rhombic schema of the
progression of faces (RSoF), and the remarkable and highly regular SoF phenomenon, this PZ3
schema, together with its rotation, provides an adequate, readily accessible modelling of the
morphology of the PPs of the 3D polyhedra and 2D tessellations by class; it demonstrates the
importance of the inherent three-fold symmetry of that order, in which the interplay of three tripartite
genders, while constrained by the bilateral complementarities of two polar genders and one neutral,
appears fundamental to objectively describing the generic structural morphology in the evolution of
form of the symmetry classes of the regular and semi-regular polytopes. Finally, I consider the
limitations of that underlying 3-fold order, and question whether 3-fold order might be subsumed as a
2-step differentiation of 2-fold order, to account for the form—counterform complementarity that
develops between the ntrl and the other 2 genders, within the ntrl, and between the —ve and +ve genders,
with respect to the PPs and their faces. The imageability of the combination of the RSoF and SoF PZ3
schema strongly recommends it to researchers and designers.
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Figure 1: Symmetry Classes I-V disposed according to their +ve/—ve facial frequency.
Background via Consensus

Inspired by Critchlow [1] and the foundational work of Griinbaum and Shephard [2], the study of
polyhedral morphology and the separation of faces has evolved to encompass both geometric and
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combinatorial perspectives. The separation of faces in polyhedra is both a morphological phenomenon,
and a subject of computational and combinatorial interest.

Recent advances in computational geometry have addressed the problem of separating a point from
a polyhedron by identifying a facet or improper face using a single linear program, which is central to
cutting-plane methods in integer programming, and highlights the algorithmic aspect of face separation
[3]. This approach provides a practical framework to comprehend how faces can be separated or
exposed in higher-dimensional polyhedra.

It has been shown from a geometric standpoint that whenever two convex polyhedra can be properly
separated, a separating hyperplane may be chosen to contain a face of either polyhedron. Notably, the
dimension of such an exposed face is bounded below by approximately half the larger dimension of the
two polyhedra, providing insight into the structure and limitations of face separation [4].

The combinatorial structure of polyhedra, particularly the organization of their faces, has been
rigorously formalized through the concept of the face lattice. This formalization demonstrates that faces
form graded atomistic and coatomistic lattices, and establishes important connectivity properties of
polyhedral graphs, which are essential to understand the relationships between separated faces and the
overall polyhedral structure [5].

In the context of digital geometry, the problem of separating a finite set from its complement in a
lattice by a polyhedron with a prescribed number of faces has been studied, with results on the
decidability of such separability under certain geometric conditions [6]. This line of research extends
the concept of face separation to discrete and computational settings.

Further, the classification of polyhedra with regular faces and specific vertex arrangements, such as
those with rhombic vertices separated by belts of regular faces, provides a deeper understanding of how
face separation can manifest in different polyhedral families [7]. Similarly, the systematic investigation
of isohedra with parallelogram faces and edges in mirror planes explores the role of symmetry and face
arrangement in polyhedral classification [8].

Finally, the construction and analysis of symmetric tangled Platonic polyhedra, where faces, edges,
and vertices are symmetrically equivalent but the polyhedra are entangled or chiral, offer novel
perspectives on the separation and interaction of faces in both mathematical and applied contexts [9].

My background and conventions

Following the conventions of my previous publications [10—22], for the regular and semiregular PT',
while ordering the axial frequencies as {ntrl,+ve,—~ve}, Fig. 1 shows the symmetry classes on 2 primary
axes of vertical +ve and horizontal —ve frequency that I recognize: Classes I-III of the polyhedra of
symmetry {2,3,3}, {2,3,4}, & {2,3,5}, and Classes IV & V of the polygonal tessellations of the plane
of {2,3,6} and {2,4,4} symmetry. I term the neutral (ntrl), the 2-frequency (2f) axis of Classes I-V; the
positive (+ve), one of the two 3f & 4f axes of Classes I & V, respectively, and the 3f axis of Classes
II-1V; and the negative (—ve), the other 3/ & 4f axis of Classes | & V, respectively, and the 4f, 5f, & 6/
axis of Classes 11—V, respectively. The ntrl axis is of constant two-fold frequency, and complementary
to the +ve / —ve axes of each class of the polyhedra and tessellations, which two axes are, in turn,
complementary to one another.

Within each class, there are 8 Primary Polytopes (PP): the Verticial Polytope, VP; the Positive Polar,
PL*, Quasiregular, QR, and Negative Polar, PL™; the Truncated Positive Polar, TP*, Small Rhombic,
SR, and Truncated Negative Polar, TP~ ; and Great Rhombic, GR. These are disposed at the vertices of
a rotated cubic schema, better described as a 3f Polar Zonahedron (PZ3), whose main axis (one V3
diagonal of the cube) is vertical, and two enantiomorphs of the Snub Polytope (SnbPT), coincident at
the center of the PZ5, which are transitional forms between the QR and the SR, but in this work, are not
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further discussed. Each PP is disposed according to the SoF of one of the 3 symmetry axes, proceeding
from the base VP to the apex GR. This structuring is uniquely determined by the SoF (selecting one of
the 2 enantiomorphs of the PZ3). The VP (considered an abstract simplicial complex (simplex))
represents a seed PT, being of vertex (VT), with its VT*,VTO, and VT~ verticial faces coincident.
Earlier papers describe the PPs and the schemas of the rhombic Vesica Pisces facial progression and
PZ, PT disposition in some depth [13—22].

Principial versus pragmatic facial polytopes of the Primary Polyhedra

In considering the surface polytopes of the PPs (or PTs, one being verticial), I draw a critical distinction
between the principial facial polytopes, and the pragmatic (contingent/incidental) facial polytopes. The
pragmatic facial polytopes are those commonly recognized, e.g., the 6 SQ & 8 TR faces, 12 vertices,
and 24 edges of the QR CO. But the principial facial PT's are limited to those that are regularly disposed
on the symmetry axes of that class, so in this case, 6 —ve RSs, 12 ntrl VTs, & 8 +ve RTs; therefore, the
edges of the CO, which do not lie on the symmetry axes, are pragmatic, but not principial—they rather
arise incidentally as the shared edge of contiguous RS & RT faces. But all 3 gendered VTs of VP, the
—ve, ntrl, & +ve VTs of OH, CO, & CB, the ntrl EGs of OH & CB, and one set of the EGs of TO & TC,
are considered principial.

The principial facial polytopes then form an inner harmony to the facial polytopes, in some sense a
deeper formal structure to the PPs, akin to the checkerboard pattern lying within the square array, or
the multi-frequency square arrays within the basic unit square array. Considering that a significant
number of vertices of the PPs are not regularly disposed on the symmetry axes (e.g., all vertices of the
GR, SR, TO, and TC), the regularities around those pragmatic vertices are likely of lesser significance
in appreciating the structural morphology of these PT's; their axes through the PT center are not
significant in terms of the PT symmetry (the common edge of ntrl pairs of TR faces is perpendicular to
the neutral axis of the Snub P7).

Transition from the a<p convention to the a<~® convention

Previously, I assigned a<>p to distinguish the two level 1 facial forms for each gender that are duals,
based on the a form characterizing the +ve & —ve axes of the PL* & PL™, and the B form their —ve
axes, respectively; with the o & B characterizing the ntrl axes of the PL* & PL™. The generic rhombic
schema, shown in Fig. 2, was previously developed into the rhombic schema of the progression of faces
(RSoF), shown in Fig. 3.

Level 2

Level 1

Level 0 generic

. . . X . Class II: {2,3,4} 1\\9/’/ 0ld Rhombic schema
Figure 2: Generic Vesica Pisces rhombic

schema: on the —ve, ntrl, or +ve axis. Here, 0 Figure 3: Class II level 0, 1 (a|B), & 2 faces by the old
represents the 0° VT (=/0/+ve verticial face); aand convention. In Class II, a & P are represented by the 1°
B represent the dual 1° forms of the primary forms: SQ, EG, or TR, and their duals RS, EG*, or RT.
polygonal face; 2 represents the fully developed 2° Level 0 VT's as dots; ntrl ap edges, 2-gons; bottom, generic;

form of that face (Class II: 0G, SQ, or HX). left, —ve, top, ntrl; right, +ve.
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That analysis eventually led to inconsistency in terms of the finer grain symmetry of the developmental
sequences of the rhombic schema, so I now use the convention shown in Figs. 4 and 5 below:

Class IT: {2,3,4} New Rhombic schema

Figure 4: Class II level 0, 1 (ajw), & 2 facial types by the
new convention. Bottom, Generic; left, —ve, top, ntrl; right,
+ve; level 0 VT's shown as dots, ntrl a/e edges as 2-gons. The
—ve @jo faces become those of the CO | CB, respectively, as

RHOMBIC
the faces of the —ve rhomb are reflected to express the bilateral ~ CLASSII | SCHEMANEW
PZ, SCHEMA / CONVENTION
symmetry of the whole, and the ntrl ¢|o faces are reflected N »
from the a| case. (Positive, dark; Neutral, mid-; Negative, light grey).

Figure 5: New Class II Rhombic Schema of level 0, 1 (a|®), and 2 faces. VP, small tri-grey circle with 0-axes;
VTs, small circles by gender; ntrl ajo edges, 2-gons. The —ve a & ® faces have switched positions (cf. Fig. 2);
—ve a & o faces are now those of the CO & CB; ntrl @ & o faces have switched to the edges (2-gons) of the CB
& OH, respectively. Overall, the a«>o dialectic replaces the ap.

Accordingly, for the rest of this paper, I rename the two level 1 faces (0. & B) as the duality a<>®, shown
in Fig. 4 above, and reassign them on the basis of the +ve & —ve faces of the SR and QR, as in Fig. 5,
so that they properly reflect the presumed morphology of the ‘opposition of oppositions’ or ‘duality of
dualities’. Without loss of generality, the ajw labels are first applied to the +ve & —ve faces of the SR
and QR, and thus to the —ve & +ve faces of the QR and SR, as in Fig. 5. The ntrl level 1 o & » labels
are now assigned to the faces (2f'edges) of the PL™ and PL*, respectively. These changes allow the finer
grain of the four strata of the PZ; schema to be consistently represented, with each facial type 0, a, ©,
& 2 in contiguous and separated status. Except for VP & GR, each PP has different facial type by axis.
The three rhombic clusters of the —ve, ntrl, and +ve genders share the same generic form, and delineate
the PoF of the other two genders that accompany the SoF of one gender. Figure 6 shows the faces of
Class II of {2,3,4} symmetry as an exemplar, and with Fig. 7b, show that considering first the ntrl
intermediary (on the rhombic schema <0 a|w 2>) PTs a and o, the a ntrl PT is edge-bounded by
(transversely separates) —ve PT's, and vertex-bounded by (longitudinally separates) +ve PT s;
meanwhile, the o ntrl PT is edge-bounded by (transversely separates) +ve PTs, and vertex-bounded by
(longitudinally separates) —ve PT's.
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Figure 6: Rhombic schemas of the —ve, ntrl, & +ve faces of Class II These show the alternation by gender of
circumferential faces around each gendered face for schematic levels 0, 1= ojw, & 2. VT's of the VP are shown as
small grey circles, ntrl EGs (a & ®) as 2-gons; for each of the three genders, the ojw faces are duals.

The pervasiveness of 3-fold symmetry in the PZ3 Schema of the PPs by facial topology

Figure 7 shows the matrices of the surface polytopes of Class II as exemplar, revealing the topology by
gender of neighboring faces, attending to the separation of —ve, ntrl, and +ve faces, respectively. For
each of the three genders, each face appears twice, as contiguous or separated (d=0 or 1), as delineated
in the respective right-most column. For this purpose, certain vertices (VP~°*, OH™, C0°, CB¥), or
edges (VP~°*, OH™, CB*, T0O®, TC®), are considered faces of zero extent or width, shown as small
circles and 2-gons, respectively, where the face they represent is principial. The three subfigures are
shown together (Fig. 7; lower left, upper center, lower right) for convenient comparison.

As expected from the pattern of symmetry axes, each face of a particular gender of each of the eight
PTs is characterized by the same necklace of surrounding contiguous polytopes that alternate in gender
between the other two genders. In terms of principial faces, each gendered axis is surrounded by
alternating axes of the other two genders, there being no distinction between ntrl (0) and polar (—.+)
axes—the three genders appear to form a tripartite system.

The respective right-most column shows the separation of faces transformation of each pair of
corresponding PTs for that particular —ve, ntrl, or +ve gender. In each case, contiguous pairs of verticial,
edge, or polygonal face separate by unit (edge length) distance. For a particular gender, the same face
occurs twice in the class; first as the lower contiguous case, which pairs initially share either vertex or
edge; and then as the higher separated case, in which pairs are separated by unit distance. This
phenomenon is traced in detail in my previous work [19—22], and forms the basis for the arrangement
of the cubic & PZ5 schema (in 1 of its enantiomorphs).

By considering the principial, rather than the pragmatic, surface PTs, it becomes clear firstly, that
each progression of contiguous gendered faces about a reference surface polytope alternates genders of
the other two genders; so for example, around the —ve SQ face of the PL™ CB, +ve VT* ‘faces’ and ntrl
EG°s (2-gons) alternate. This means that the various patterns of gender are subdividable into triangular
components of the three genders, which alternate in chirality, so for the —ve face, 0—+ and + — 0; for
the ntrl face, —0 + and +0 —; and for the +ve face, — + 0 and 0 + —. The VP faces may be considered
to be latent, of zero extent.
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GENERIC POSITIVE NEUTRAL NEGATIVE
(Class Il) FACIAL PT FACIAL PT FACIAL PT

Figure 7: Matrices of

the surface polytopes o

of Class II showing (GRCO)

the topology by

negative, neutral, or SRaR
(SRCO)

positive gender of
neighboring faces,

according to the o) The three subfigures are
separation of faces. shown together for
i ease of comparison.
e —ve (VT/light grey),
lower left;
> ntrl (VT/EG/mid-grey),
)
upper central;
+ve (VT/dark grey),
o lower right.
For each subfigure
B by gender, each face
(o) appears twice in the
right-most column,
v QO from contiguous (d=0),
vP,) S0 3 \
to SoF separated (d=1).
s 2
GENERIC POSITIVE NEUTRAL NEGATIVE POLYTOPE GENERIC POSITIVE NEUTRAL NEGATIVE
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The differentiation into and interplay of the three genders therefore seems fundamental to the form
and interrelation of the polyhedra. However, the ntrl has particular qualities that differentiate it from the
—ve and +ve, that go beyond the unique character of 2/ symmetry; it seems to be self-dual, and appears
to generate internally two kinds of ntrl o and o elements; by contrast, —ve and +ve elements are dual
internally within the 2D facial level of the a«>w duality, and externally at firstly, the dual +ve->—ve
correspondence of faces (at all 3 levels (0, ajo, and 2) of the rhombic schema), and finally, at the polar
3D polyhedra levels of the dual OH < CB and form—counterform TO <> TC . The bilateral
complementarity of the PZ3 schema imposes an undeniable facticity on what appears to be a primordial
3-fold symmetry. The 2-fold form—counterform complementary nature of the polyhedral order seems
to be in cosmogonic terms, in the emergence of form from potential, a later developmental constraint,
almost a geological intrusion on a purer 3-fold perfect symmetry of 3 tripartite genders. Simultaneously,
there is a creative tension between the two that stimulates the imagination; the 2-fold division seems
more prosaic; the 3-fold more subline. The two-fold is profane; but the three-fold transcendent.

Thus the bilateral differentiation by +ve/—ve gender, and by o | o face, conditions the strong three-
fold order: at the 3D polyhedral level, the duality for the +ve and —ve PTs applies to the polar OH—
CB, and in the form—counterform complementarity TO—TC, while at the 2D facial level, each pair of

—ve, ntrl, and +ve o— polytopes are duals. These oppositions are regarded as complementarities that
are external for the +ve and —ve genders, and internal for the ntrl gender; and can be generalized to the
polar pairs VP—GRCO, OH-TC, CO-SRCO, and CB-TO.

Figure 8: Surface polytopes by

gender of Class II showing the

disposition by gender of
neighboring faces. As expected,
within each gender, the formal pattern
of neighboring genders is identical,
with each face seen twice, as
contiguous (d=0) or separated (d=1).
The cubic PZ; schema devolves into
two rhombic schemas: a lower rhomb
representing d=0, and an upper
rhomb, d=1. <VP—OH|CB—SRCO>
of the lower, contracted rhomb is
precisely reflected in the
<CO—TO|TC—GRCO> of the upper,
expanded rhomb; all classes share the
generic <VP—PL*|PL™—SR> <
<QR—TP*|TP~—GR> dialectic.
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Figure 9: Surface polytopes by
gender of Class II show the
by of
neighboring faces. Rotation of the
cubic 2.5D schema of PPs by 27/3
about the vertical V3 axis shows

disposition gender

snapshots of pairs of corresponding
faces, with contiguous (d=0) below,
separated (d=1) vertically above. —ve,
left; ntrl, top; +ve, right. (At each
rotation of the PZ; cluster of PPs,
each component PP also individually
rotates in parallel by the same angle
about the same axis to present its
appropriate face and orientation).

-2r/3
ROTATION
NEGATIVE
FACIAL PTs
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ZERO
ROTATION

NEUTRAL
FACIAL PTs

-2r/3 +2n/3

ROTATION ROTATION
NEGATIVE POSITIVE
FACIAL PTs FACIAL PTs

Figure 10: Surface . polytopes by
gender of Class II by rotation of the
cubic schema about its main axis.
These are shown at left, top, and right.
VP s,
circles; separated ntrl VT's, small grey

small 1-gon white/tri-grey
circles by gender; ntrl edge principial
faces, mid-grey 2-gons. Each face
appears in vertical pairs by gender; on
the lower rhombus of the cubic
schema, contiguous (d=0); on the
upper rhombus, separated (d=1). In
this figure, as the PP cluster rotates,
PP
orientation. Top subfigure shows ntrl

each maintains  constant
internal bilateral complementarity
TO & TC, OH & CB. Below, left <
right relation of corresponding —ve <
+ve external bilateral complement-
arity TO <> TC, TC < TO ; self-
complementary SR<>SR, CO—CO;

+2n/3

ROTATION . .
rosiive  and  bilateral ~ complementarity
FACIAL PTs
OH+<CB, CB+~0H.
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Figure 9 shows the Class II disposition by gender of the principial surface polytopes. Each cubic schema
devolves into two rhombic schemas: a lower thomb of contiguous faces (d=0), and an upper rhomb of
separated faces (d=1). Within each gender, each face occurs twice, contiguous & separated for d=0 &
1, according to the SoF previously described [22: fig. 1].

Figure 10 confirms the regularity of the correspondence of facial pairs according to the separation
of faces from contiguous (d=0) to separated (d=1), rotating the cubic schema of PPs about its main
vertical axis from left to right at —2a/3, 0, and +2m/3 for —ve, ntrl, and +ve faces, respectively (PP
positions vary by schema, except for the GR & VP). As previously observed [21], the cubic schema of
polyhedra suggests the cosmogony of the PPs within a class by the separation of faces from PTito PT:
the initial eruption of the absolute into these facial forms seemingly so intense that they must push away
from one another, to soften their forms, expanding to full-bodied existence; but in holistic fashion within
tight, constrained 3/ symmetry.

The PZ; has 3 zones of sheaths of parallel edges/linkages; for example, in the neutral subfigure (top)
of Fig. 9 above, for the separation of faces, the ‘vertical’ sheath of edges/linkages in this figure denotes
the separation of neutral faces; the ascending right sheath denotes the separation of +ve faces, while the
ascending left sheath denotes the separation of —ve faces. Meanwhile, the rotations of the three
subfigures at left, top, and bottom show for the ‘vertical’ linkages, the separation of the —ve, ntrl, and
+ve faces, respectively.

Conveniently, that cubic and PZ5 schema can—for any gender—be differentiated into two rhombic
schema, the lower rhomb delineating the four ‘contracted’ PT's that have contiguous faces of the same
gender (d=0), while the upper rhomb delineates the four ‘expanded’ PTs that have separated faces of
that gender (d=1). As in Fig. 10 above, the vertical linkages between corresponding faces of lower d=0
and upper d=1 delineate the SoF—for that gender—for each pair of PT's for each of the three genders,
as the contracted PT transforms to the expanded PT.

Notwithstanding the remarkable persistence of 3-fold symmetry between the three —ve, ntrl, and +ve
genders, critical differences are evident between the neutral, and the —ve and +ve cases. Notably, while
the —ve/+ve duality of the cases is realized in the (\2) three-dimensional duality of the OH«>CB polar
PPs (0] ~wjag <07), and complementarity of the TO-TC (aj <252 <> w7 ), the corresponding
duality in the ntrl cases present two-dimensionally (w3—al) and (w)—al), in the duality of faces at
level 1 of the rhombic schema. Although the bilateral symmetry and complementarity of the PZ3
schema dominate the otherwise pervasive 3-fold symmetry of the polyhedral order, the 3-fold symmetry
would appear to be more archaic.

Application to core—shell or core—multishell nanomorphologies

As I elsewhere describe in detail [22], the sequences of facial development of the rhombic and PZ3
schemas can be translated into core—shell (considering one transition), or core—multishell (considering
two or all three transitions) morphologies, along the skewed triangular meridionals of the PZ3 schema.
Further, as a consequence of the fundamental harmonic geometry, I propose that these geometries are
applicable to developing high purity nanostructured materials—conceivably representing a new class
of harmonically engineered materials that might be the antithesis of defect-engineered materials.
Source, intermediary, and goal PTs are concentric and coaxial. The separation of faces transitions 0o —
01, 0p — 0, OF Mo —> ®1, of 29— 2; develop as polygonal prisms, the 0o — 0 transition being a radial,
while the neutral 0o — o1 & @o— @) transitions develop as radial rectangles. The 0o — o and 0o — o
transitions develop as polygonal pyramids. The ao— 20 and mo — 2o develop as truncated pyramidal
frusta (TPFs; cupolae) with inner a or @ face and double-frequency outer 2 face, with side walls
alternating isosceles triangles and rectangles, the 2/ neutral case being radial gables (as in CB—S RCO).
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The Polar Zonahedral schema of the Primary Polytopes

The cubic PZ; schema, viewed as a progression from source VP to fully formed goal GR, has three
major movements or transitions or linkages to the development of the polyhedra within any one class.
Initially, the seed VP polytope differentiates in the first transition into the three polar PTs of the +ve,
ntrl, and —ve PLs: PL*, QR, and PL™. Medially, the three (polar) PTs crossover in the second transition
to yield the three (truncated) TPs of the TP~, SR, and TP*. Finally, in the third transition, the three
truncated TPs integrate to yield the common fruit GR.

The analogous machine learning algorithm for the polar zonagon (2D) or zonahedron (3D) of any
natural frequency would separate the input data into primary clusters, mix and match into secondary
clusters to compare pairs in sequence, and combine all into the output. This underlying polar zonagonal
geometry (together with its polar inversion, the (extended) star) has fascinated traditional Islam as the
natural geometry of the center, as evident in its vertical axial extension into the controlling geometry of
the polar zonahedral dome as spatial form, its surface decoration, and even as high-rise space truss [10:
pp.20—24, Plates B, C] ¢f. 30 St Mary Axe ‘The Gherkin’ in the City of London.

In the PZ5 schema, the singular VP, reflecting the initial hierophany, contains the whole polyhedral
cosmos in potential, and is characterized by all three contiguous level 0 genders;

o the 3 initial transitions of differentiation yield the 3 PLs: PL™, QR, and PL™, each characterized by
one separated strata 0 gender PT, and two contiguous strata | gender PT's;

o the 6 medial transitions of crossover yield the 3 TPs: TP~, SR, and TP~, with each characterized
by two separated strata 1 gender PTs, and one contiguous level 2 strata PT;

e the 3 final transitions of integration culminate in the singular goal GR, which is characterized by
all three contiguous level 2 genders.

The relevance of the Vesica Pisces rhombic schema of faces

The rhombic schema of faces (RSoF; Figs. 4 & 6) has three levels of faces: 0, | = ¢|o, and 2, while the
PZ; schema (Figs. 5, 10, 12), has four strata of PPs: 1, 2, 3, and 4. The PZ5 linkages represent the SoF
of one gender for each linkage, in 3 sheaths of —ve, ntrl, and +ve faces, in the core PZ3 schema view
rising left, vertical upward, and rising right, respectively, which sheaths are the zones of the PZ3. The
transitions of the SoF's, which the directed linkages represent, appear to drive the overall transitions of
one PT to another, while the steps in rhombic schema level of the other two genders represent the PoFs,
usually described as the truncations of the PPs and of their faces. The two PoF transitions of the non-
SoF genders exhibit the same behavior, but for the medial transition, differ in level: (0;—a|ow—20 or
01— w1|we—20), with facial type of the middle term polar to the SoF (wo=3@: or ao=3a), while the initial
and final transitions alternate o and ®: 0p—0i0 & 0p— g and a;—2; & w;—2), for SoF 0,30, and 20=32,.

For a given gender, faces in a PP are either contiguous, sharing either a VT or a transverse EG, or
separated, distanced by a longitudinal EG (from VT of one face to the closest VT of a proximal face),
or by another gendered face (from EG to the closest EG).

Thus, the VP of strata 1 has —ve, ntrl, and +ve faces (PTs), each contiguous, all coincident. Strata 2
PTs (PLs) have, by gender, one separated level 0, and two contiguous level 1 (o or ®) faces. Strata 3
PTs (TPs) have, by gender, two separated level 1 (a/o) faces, and one contiguous level 2 face (sharing
a common vertex or edge). Strata 4 PT has 3 separated level 2 faces. Here, the 3D 3fsymmetry yields
to the bilateral complementarity of the 2D projected PZ; schema.

The —ve, ntrl, and +ve faces are characterized as: VP: level (0, 0, 0) faces; PL*, QR, PL™: (0, 0, ®);
TP~, SR, TP*: (a, ®, 2); GR: (2,-2, 2) (row 3). A measure of the positivity/negativity (+/—vity) of a PP
is to multiply the facial levels of the rhombic schema (0, a=w=1, 2) by the PP’s gender (—1|0|+1) (hence
the ntrl values become zero, row 4), and sum them (row 5). The complementary PL* <>PL™ &
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TP+« TP~ are of similar measure +1 <> —1, respectively, with VP=QR=SR=GR=0, and PLs, TPs
disposed either side of the VP—QR~SR—GR bilateral plane.

Table I. The generic PPs according to their facial level on the rhombic schema & overall gender.

PL T
PP VP - : - - - GR
PL QR PL TP~ SR TP
[0+ faces | 0]0]0 | Ojow]a | |0|lw | @|a]0 | 2]|a|o | ©|2]a  a|0]2 212]2
face ~ gender| 0]0]0 | 00| +1 |-1]0[+1] -1]0]0 |-2]0]+1[-1]0|+1 -1]0|+2| -2]0]2

Y =+-ity 0 +1 0 71 =1 0 1kl 0

The PPs can be further characterized by whether the faces of a gendered axis are contiguous (subscript
d=0) or separated (d=1), d being the distance between two proximal faces = edge length:

Table II. The generic PPs according to the rhombic schema and their facial separation (d=(0,1)).

PL TP
PP VP - - - - > GR
PL QR | PL- | TP SR_| TP

genderseparation| Og | 0o | 0 01 | wo | o |tg | 05 | @ |wo | &g |0y 20 | 0 | g @y |20 @y |01120[2112412

If parity is defined as the sum of the level on the rhombic schema (0, 1, or 2) and the distance apart of
faces of d (0 or 1), this is conserved, so at strata | of the STMs of the PZ3 cubic schema, parity for each
of the 3 gendered faces is 0; at strata 2, 1; at strata 3, 2; and at strata 4, 3; in toto (0, 3, 6, 9) per PP.

The VP is characterized as all three gendered sets of contiguous faces; the PLs by one gendered set
of level 0 separated faces and two gendered sets of one or two level 1 contiguous faces; the TPs by two
gendered sets of one or two level 1 separated faces and one gendered set of level 2 contiguous faces;
and the GR by all three gendered sets of separated faces.

The generic PPs can similarly be described by their number and gender of separation of faces, so
numerically, the VP has undergone 0 SoF's, the PLs have 1, the TPs 2, and the GR 3:

Table II1. The generic PPs according to their separation of faces and by gender.

PP VP PLs TPs GR
PLY QR PL- | TP SR TP*
No.of SoFs| 0]0]0 | 1/0]0 | 0f1]0 | o0fof1 o1l [1]0of1 | 1]1]0]1[l]l

In terms of gender, VP has undergone no SoF; each PL has undergone 1 SoF of its gender; each TP
has 2 SoFs, but not of its gender; while GR has 3 SoFs, 1 of each of the 3 genders.

Nomenclature: *, ‘colored’ e Class I 3D: OH" = tetra-tetrahedron (TR: TR); CO* = SR TR:TR; TO* = GR TR: TR e Class
11 3D: OH. octahedron; CO, cuboctahedron; CB, cube; TO, truncated octahedron; SRCO, small rhombic cuboctahedron; TEC;
truncated cube; GRCO, great thombic cuboctahedron e Class III 2D: DG, decagon; PN, pentagon; RP, rotated pentagon ©
Class I1T 3D: DC, dodecahedron; GRID, great rhombic icosidodecahedron; IC, icosahedron; ID, icosidodecahedron; SRID,
small rhombic icosidodecahedron; TD, truncated (trunc.) dodecahedron; T1, trunc. icosahedron e Class IV 2D: Component
arrays: vt, verticial; tr, triangular; hx, hexagonal: rt, rotated triangular; 7, rotated hexagonal; 2t, 2f triangular (hexagonal);
2x, 2f hexagonal (dodecagonal) o Combined arrays (+ve:—ve): vt: vt, verticial:verticial; tr: vt, triangular:verticial; vt: hx,
verticial:hexagonal: rt: 7, rotated triangular:rotated hexagonal; 2t: 7x, hexagonal (2f triangular):rotated hexagonal: rt: 2x,
rotated triangular:2f hexagonal (dodecagonal); tr: hx = SR tr: hx, triangular:hexagonal; 2t: 2x, 2f triangular:2f hexagonal
(dodecagonal) e Class V 2D Component arrays: vt, verticial; sq, square; ns, neutral square; 7's, rotated square; 2s, 2f square
(octagonal) @ Combined arrays (+ve:—ve): vt: vt, verticial:verticial; sq: vt, square:verticial; vt: sq, verticial:square; 7's: 75,
rotated square:rotated (trunc.) square; 2s:7s, octagonal (2f square):rotated square; 7s:2s, rotated square:2f square
(octagonal); sq: sq = SR sq: sq, square:square; 2s: 2s = GR s5q: 5q, 2f square:2f square = 0G: 0G e Generic: —ve, negative;
ntrl, neutral; +ve, positive; V, VT, vertex; VP, verticial polytope; NV, neutral vertex; EG. edge; NE. neutral edge; F. face;
FT, facial polytope; PG, polygon; PT, polytope; NS, neutral square; PoF, Progression of Faces; PRS, prism; PYR, pyramid;
RSoF. rhombic schema of faces; SoF, separation of faces o ‘rotated’ faces are truncated faces (duals) =
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The facial development by gender accompanying the separation of faces

The regularity of the transitions accompanying the separation of faces between two linked PPs in the
PZ; schema then also becomes apparent:

Table IV. The generic progression of facial development by —ve, ntrl, and +ve gender according

to the PZ; and rhombic schema according to the SoF, centered on the VP—QR—GR axis.

Iv. Generic progression of facial development by gender according to the PZ3 schema of the SoF.
Goal PT GR o
Gender —ve | ntrl | +ve —ve ntrl +ve —ve ntrl +ve —ve | ntrl | +ve
Final 21 2l 2 21 21 21 21 21 21 2| 2 21
Meronat | T [ F 1] i U t tot
Transition: | gy | 20 | W o (O] 20 20 a (o] O 20| O
gue | v SR e v TP [T0] U v TP I O U SR IR
Gender —ve | ntrl | +ve | —ve | ntrl | +ve | —ve | ntrl | +ve [ —ve | ntrl | +ve | —ve | ntrl | +ve | —ve | ntrl | +ve
Medial | @1 20| a1 fou|@ |20 a1 |@ |2 20| |@ |2 |0 |@ @2 |0
ey AR ERSE E RS SIS FiR S S EER AT SR PED S SSEE
Transition | 0, | o | ao | O1 | @o | 0o | a0 | Or | @o | a0 | 01 | @0 | @0 | a0 | 01 | o i ao | 0
ot PL* [0H] QR (co] PL" (CB]
Gender —ve ntrl +ve -ve ntrl +ve -ve ntrl +ve
Initial 0y o 0o o 0, o o Qo 0,
Mt | Mo eucifairatlo 1 8 | amftonibe bt s Snfesonf tofounst 0 1
Transition 0o 0o 0o 0o 0o 0o 0o 0o 0o
Source PT VP [VP]

—ve, negative; ntrl, neutral; +ve, positive. Skwd Eqtl, Skewed Equatorial; i, Separation of Faces (SoF) of one gendered face;
1, accompanying Progression of Faces (PoF; transition of level) of the other two gendered faces. Subscripts differentiate the
contiguous d=0 and separated d=1 cases. Of the 3 horizontal bands of information, the bottom band describes the initial
differentiation of the strata 1 seed VP into the 3 strata 2 polar PT's; middle band describes the medial crossover transitions of
the strata 2 PT's to strata 3 truncated polar PT's following the transitions of the PZ; schema along the alternating clockwise
and counterclockwise, skewed triagonal meridionals of the PZ; schema (there is no differentiation of priority between the
width of the transitional cells; they are equivalent); top band describes the final integration of the three strata 3 PT's to culminate
in the strata 4 GR. For each transition, the two PT's at right in square parentheses refer to the two corresponding Class I PPs
of that transition: source and goal.

In this analysis, switching o <> ® for the —ve, and for the ntrl, allows the 3-fold symmetry of the PZ5 schema by gender
to be revealed, treating ntrl as in many senses an equivalent gender to —ve and +ve, rather than qualitatively different. The new
convention varies facial type by axis (except for the VP & GR), while better reflecting the duality inherent in the bilateral
nature of the PZ5 schema, offering superior imageability for further research and application.

-1 0 T2+ 0 3 +
i 0,—w, | 030—’201 i : 0,—a, | %—’20] 5 ‘ 0,—a0 | wo—’zoj
T

[rol—’al | ag—2 1 — f 0,—w, | wo—’zol — | 0,—0; | 0g—2 l
+ 6 0 + 5 - 0 4

Figure 11: Class II cyclic PoF complementarity of the facial progressions of the two non-SoF genders.

The SoF phenomenon according to the PZ3 schema, and the PoF according to the rhombic schema,
appear complementary, while within the PoF, the initial differential and final integral transitions are
complementary, as also are the PoFs in Fig. 11 above, abstracted from Table V.
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Table V. Generic Skewed triagonal meridionals of the unfurled 3-frequency Polar Zonahedral (PZ5)
schema of the Primary Polytopes about the VP---SR—GR axis, with exemplar Class II figures.

V. Generic Skewed triagonal meridionals of the PZ; schema of the Primary Polytopes, and for Class II.
e | QR-TP™ TP~ «PL" PL™—SR SR+PL* PL* —TP* TP*+ QR

Generic seq.| VPQR-TP~>GR | GR-TP~«PL VP | VP-PL -SR-GR | GR<SR«PL*«VP | VP-PL*>TP*>GR GR«TP*«QR«VP

Class I seq.| VP—CO—TC—GRCO | GRCO-TC~CB~VP |VP—CB—SRCO—GRCO|GRCO—SRCO+-OH+VP| VP—OH—TO—GRCO GRCO—TO<CO-VP

Exemplar
figure for
Class II
{234} |,
symmetry
# 10 20 3v 5L 60U
Face gender| —ve 1 ntrl i +ve —ve] ntrl l +ve:4 ~Veé ] ntrl l +ve | —ve I ntrl ] +ve —ve[ ntrl ! +ve | —ve 1 ntrl l +ve
GR GR GR GR GR GR GR
Final 2 2; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Integral
Mazidional f 1 i f i 1 ) il 1 1 t t 1 1 fr 1 1 T
Transition | 9, a [o]] 20 a (O] @ 2 a o] 2 a o o 20 o [o]] 20
TP e TP~ SR SR TP* TP*
Medial 2 a o 20 a oy O} 20 o oy 20 ai a o} 2 a [ 20
Crossover
Skewed ¥ ;| ft t T 1 ft ? t t 1 1 t f 3 f T t
Equatorial
Transition | @ 04 wo 0o 0o 0 o o 0 01 @o ao 0 o oo o 0 o
PL QR PL™ PL™ PL* PL" QR
Initial oo 0; wo 0o ao 0y o do 01 01 o do 0 o do do 0 Wo
Differential
Meridional| ! t t T 1 m 1 1 T t 1 1 t i 1 1 t 1
Transition | 0, | 0 | 0o | Oo | Oo | G | O | O | Oo | O | O | O | G | 0o | G | 0o | 0o | 0o

VP VP VP VP VP VP VP
seq., sequence; —ve, negative; ntrl, neutral; +ve, positive; Skwd. Eqtrl., Skewed Equatorial. 71, Separation of faces of one
gendered face; 1, accompanying progression of faces (transition of level) of the other two genders. Subscripts differentiate the
contiguous d=0 and separated d=1 cases. Of the 4 horizontal bands of information, the lowest band describes the initial
differentiation of the strata 1 seed VP into the 3 strata 2 polar PT's; the two middle bands describe the medial crossover
transitions of the strata 2 PTs to strata 3 truncated polar PTs following the transitions of the PZ3 schema along the (lower
band) clockwise, and (upper band) counterclockwise, STMs of the PZ5 schema; while the uppermost band describes the final
integration of the three strata 2 PT's to culminate in the strata 4 GR.

The skewed triagonal meridionals of the development of PTs by the separation of faces

Recent work on chiral molecular polyhedra demonstrates the importance of facial interactions and
separation in complex assemblies [23]. As previously presented [21, 22], but here refined, with critically
redefined a«<>o dialectic convention that replaces the earlier a«>B dialectic convention, the (rotated
cubic) PZ; schema of the polyhedra based on the separation of faces can be understood as 6
progressions along the skewed triangular meridionals (STMs) of the cube, 3 clockwise and 3 counter-
clockwise on the PZ5 schema. Each STM consists of 3 linked edges of the schematic cube, developing
through the 4 strata in the generic order VP—PL—TP—GR. The 6 STMs are shown left to right as an
unfurling about the vertical axis through the VP-SR—GR meridian of the PZ3 schema from a vertical
fissure through the VP—QR—GR meridion, viewed from without, not within.
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Table VI. Overlay of the PoF by axis of the Class II Skewed triagonal meridionals of the unfurled
PZ; schema about the VP---SR—GR axis, and generic SoF and PoF transitions of faces.

VI Overlay of the progression of faces by axis of the PZ3 schema Skewed triagonal meridionals of Class II.
Medial PT _ - - =
it QR—TP TP~ +PL PL"—SR SR+PL* PL*->TP* TP*+ QR
sequence
Generic seq. | VP2QR-TP™—>GR | GR«TP~"«PL «VP| VP-PL"->SR-GR GR«SR«PL*«VP | VP-PL*>TP*->GR| GR<TP*«QR«VP
Class I seq. | VP—CO—TC—~GRCO | GRCO~TC+CB+—VP |VP—CB—SRCO—GRCO|GRCO+SRCO—OH+VP| VP—OH—TO—~GRCO | GRCO+—TO—CO—VP
Exemplar
figure for
Class IT
{2.3.4}
symmetry
i
Negative
Neutral
Positive
Negative | Qo= a0—20321121E 20«00+ 00— 0030 =21|21<0i=0EW|0I0—u—21|2icatan—
Neutral W20 m—=2 | 2i—mEw—0]0—aw—=>2321|21E20«0-0|{0=o3or—=21|2i< o< 00
Positive |0o—= w3 —=21{21— o+« 0E0|0630—u—21|2i—wEd—0|0—=aw—=>2321{21E20« 0o+ 0

Vertices shown as small circles; neutral o and o faces (edges) shown as 2-gons; separation of faces: = (—ve VT, SQ, RS, &
0G: ntrl VT. EG, & SQ; +ve VT, TR, RT, & HX) shown as double-line polygons. Each gendered axial face progresses
0—a—2 or 0—m—2, punctuated by one SoF. Subscripts in the last three rows refer to the generic spacing of faces from the
SoF of d=0 = 1 (contiguous = separated), the PoF of the other two genders always conserving d.

Table VI above shows these progressions of faces of a particular gender on its symmetry axis. For Class
1T as exemplar, stylized axial views of each of the Skewed Triagonal Meridional (STM) progressions of
faces on the —ve, ntrl, and +ve axes are shown. In each transition PP to PP, there is a SoF on each of
the gendered axes; for any STM, there are 3 SoFs, one —ve, one ntrl, & one +ve: one strata 1 = 2, one
strata 2 33 3, and one strata 3 =3 4 (initial, medial, & final).

The first of the three transitions of PPs of each STM is meridional; the second is skewed equatorial,
being either clockwise or counterclockwise; while the third is again meridional. The faces of each PP
may be considered to progress along each of the STMs, and to do so regularly according to the cyclic
harmony evident in the table. For each gender, the facial types of those axes always progress in the
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rhombic schema sequence 0—a—2 or 0—0—2, punctuated by one SoF at the initial, medial, or final
stage. For each transition of PPs, one gendered facial transition is the separation of faces, so conserves
the level of PT on the rhombic schema while transitioning from contiguous (d=0) to separated (d=1),
so either —ve-, ntrl-, or +ve-gendered 00301, 0o=30 Or W31, or 2032,. The other two gendered (non-
SoF) faces for that transition of PT progress one level on the rhombic schema (a PoF), while
conserving their contiguous or separated status (d). In that development, for each STM, in the first,
meridional transition, one face progresses 0o—ao and one face progresses 0o—wo while conserving d=0,
while one face separates (Oo—0o, Oo—wo, and 00=301). In the second, skewed equatorial transition, the
face that has separated progresses while conserving d=1, i.e., 01—(a or @); one of the other two faces
progresses while conserving d=0, i.e., (0o or wo)—20 of the same rhombic schema pole (a or ®), while
the other rhombic schema pole (@ or o) separates wo =3 ®; or to 3 a, so either: (01—au, 0o—20, Mo =3
@) or: (01—®i1, we—20, o =3 ). In the third, meridional transition, the face that has just separated
progresses ai—2; or @ —21; the face (of the other rhombic schema pole) that had initially separated
progresses @ —2; or 0,—21, while the remaining face separates 2032y, so either: (=21, 0124,
20332)) or: (@1—21, a—21, 20321).

The return to duality

The SoF uniquely determines the objective (cubic) PZ3 form; but while the pairs PL*-TP* are linked
(left), as are PL™—TP~ (right), QR and SR are not, but are polar; hence the 3-fold symmetry of the order
yields to bilateral complementarity about the ntrl VP—QR~SR—GR plane (the central ‘vertical® axis in
Fig. 12 below, and seen in Fig. 13 from above (top), and below).

Class I
PZ, schema

Generic
PZ, schema

Figure 12: The 2.5D Generic (left) and Class II (center & right) PZ; schema of bilateral complementarity
that provides above—below, front—back, & left-right existential differentiation.

Thus, each PP is involved in three SoFs. The Strata 1 VP generates three SoF's, one per gender. The
three Strata 2 PPs (PL™, QR, PL*) each inherit one SoF, and generate two SoF's in the other two
genders. The three Strata 3 PPs (TP~, SR, TP*) each inherit two SoF's, and generate one SoF in the
remaining gender. The Strata 4 GP inherits three SoF's, one per gender.
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Figure 13: Generic (black & white) and Class II (grey) PZ; schema on the main VP—GR axis from above
(top), and below (bottom). Arrowed links indicate the SoF transitions PP—PP; STM progressions indicated by
rounded triangular arrows, numbered as in Tables V and V1. Principial VT's are indicated by small grey circles by
gender; ntrl ajw EGs by mid-grey 2-gons. Both the bilateral complementarity (left-right) and the constrained 3-
fold symmetry are evident: PL*—TP* & PL™—TP~ are direct linkages (V1 edges of the cubic PZ; schema), but
QR & SR are polar opposites (a V3 diagonal).

Notwithstanding the rich and persistent 3-frequency symmetry evident in the analysis of the PZ3
schema, it is not comprehensive; bilateral complementarity is evident in the duality of the +ve OH <
—ve CB, as also in the a <> o faces, including the ntrl EG? < EGJ, and in the form—counterform
equivalence of the +ve TO <> —ve TC PPs, where there is an imbalance of +ve vs. —ve gender (Table
I). Patently, while the polar OH <> CB are dual PPs (and similarly, the TO <> TC may be regarded as
counterforms to one another), the OH & SR, and SR & CB, are neither dual to one another, nor bilateral
counterforms. As seen in Table I, the GR, SR, QR, & VP are balanced in gender, but the OH & CB, and
TO & TC, are not; the first four are balanced, with equal positivity/negativity (+/—) measure of 0, while
in the other four, either + or — predominates, at +1 and —1, respectively. The 3-fold symmetry of gender
is constrained by the bilateral complementarity (form«>counterform) of the PZ; schema, evident in its
2D schematic form, which can be modelled by flattening the 3D PZ3 to a 2D projection, viewed with a
central vertical axis that runs from the GR to the SR and the QR to the VP, the SR and QR unlinked,
with the +ve PL* & TP* to one side (the left in my model from without; the right from within), and the
—ve PL™ & TP~ to the other (the right from without). In class II, the central vertical axis is GRCO-
—SRCO~CO-VP, the SRCO and CO unlinked, with the +ve OH and TO to one side, and the —ve CB
and TC to the other; the QR (CO) (otherwise split in two at the left & right of the unfurled schema in
Tables 5 & 6) remains at the center. The 3D 3f symmetry yields to 2D bilateral complementarity,
whether at the level of form < counterform (TO<TC), or pure duality (of 3D OH«<CB, and 2D facial
a—® for the PPs in general). Both symmetries persist in a creative tension as the PZ3 schema is
alternately visualized in its 3D and 2D forms. In my next paper in this series, I anticipate looking in
more depth at this notion of bilateral complementarity that characterizes the order of the polyhedra.
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Conclusion

This paper further develops a highly imageable model to account for the development of form in the
regular and semi-regular 2D and 3D polytopes, generically across all five classes, and exemplary for
Class 11 of {2,3,4} symmetry. This order is based on the distinction of principial faces from pragmatic,
which principial faces allow 1-gon VT's or 2-gon EGs of zero extent or width, and the recognition of a
seminal verticial PT in each class. These enable the development of the PoF rhombic schema and of
the 3-frequency PZ schema abstracted from the SoF: in each class, for each gender, each face occurs
twice; first in the contracted contiguous form, where pairs of proximal faces share a common VT or
EG.In the SoF, they expand into separated form, separated by an edge or face of different gender along
their axis of separation, and correspond to the lower and higher rhomb, respectively, of the PZ3 schema.

This order appears rigorous, and generates insights into the morphology of these 2D and 3D PTs,
both generically, and exemplary for Class 1. The PZ3 schema suggests an ordered development of the
PPs within any one class, from VP to GR, which appears to be driven by the SoF phenomenon, together
with the associated two PoF's by gender according to the RSoF. The order of PPs appears to be
characterized by a primordial 3/ symmetry that develops a tripartite gendered structure organized about
a unique main VP—GR axis, that is then constrained into bilateral complementarity about the
VP—QRSR—GR vertical plane, which complementarity includes duality, also axially as 3 polar pairs.

Creative tension is apparent between the two organizing principles of 3-fold symmetry about the
vertical main axis, and complementarity about the main bilateral plane, which is reflected in the
ambiguity of the 2.5D PZ3 schema, which in its 3D form unveils the 3-fold symmetry, while in its 2D
form, emphasizing the bilateral complementarity. The 3-fold archaic nature appears ephemeral and
transcendent; the 2-fold complementarity pragmatic and existential. To considerable degree, the ntrl
gender acts equivalently to the +ve and —ve genders, so the three genders can almost be considered as
equal players in a tripartite system, as reflected in the three-fold symmetry of the prototypical PZ3
schema. Yet the ntrl gender develops a form—counterform complementarity viz-g-vis the +ve and —ve
genders; the +ve and —ve genders develop an external form—counterform complementarity to one
another, while the ntrl develops an internal self-complementarity at the levels of PPs (PL*«<>PL~
duality and TP*«<—TP~ complementarity), and faces (a«<>o facial form—counterform ability).

In the evolution of form, gender arises in a two-step process. First, the distinction between ntrl and
polar arises; second, both cases differentiate — the polar externally into a +ve <> —ve dialectic of primary
PTs, the ntrl internally into an e« dialectic of ntrl faces, the two dialectics mirroring one another.

[ have traced the evolution of form in the cubic schema, considered as a 3-frequency polar
zonahedron (PZ3), disposed on a vertical V3 axis from base VP to polar opposite crowning GR. This
disposition and orientation of the cubic schema with a unique vertical major VP—GR axis differentiates
the 8 PT's of any one of the five symmetry classes into 4 strata and subclasses of PTs: the seed VP, from
which the class of PT's springs; the lower polar band of PL™, QR, & PL* that the VP first gives rise to;
the higher truncated polar band of TP*, SR, & TP~ that the second band elements connect to, and the
crowning GR that the third band elements return to.

The ‘vertical’ progression in the PZ5; schema might thus be considered to have four vertically
differentiated strata of PTs, with three zones of transformation between them. The first polar zone is
the initializing three-fold separation from the base VP to the lower band of PL™, QR, & PL*. The
second equatorial zone is characterized by each of the three latter PTs bifurcating to recombine in pairs
to link to the higher band of TP*, SR, & TP~. The third polar zone is then the finalizing three-fold
reunion of those three elements to culminate in the crowning GR.

The PTs in any of 5 symmetry classes can thus be systematically differentiated into the four
subclasses VP | PL™, QR, & PL* | TP*, SR, & TP~ | GR, which qualitatively differ. They can then be
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further differentiated by three-fold gender of —ve (PL™ & TP™), ntrl (VP, QR, SR, & GR), and +ve
(PL* & TP*). The ntrl can be classified into major (VP & GR) and minor (QR & SR) ntrls; in elevation
(Fig. 12) and plan view (Fig. 13), the PZ; schema reminds that only GR and VP are truly axial; in
contrast, QR and SR, like PL*/~ and TP*/~, lie on the skewed equatorial band, again emphasizing their
‘lower’ tripartite polar nature, rather than the true ‘higher’ neutrality of the VP and GR. In that sense,
neutrality takes two forms and presents at two levels—firstly of the comprehensive overarching
absolute (VP and GR), and secondly of the relative (QR and SR) as one of the three tripartite genders.

Consideration of the pervasive 3-fold order of the PZ; schema suggests there is merit in considering
the QR to function in part as the Polar Neutral PL°, and the SR as the Truncated Polar Neutral TP?;
these redefinitions suggest considering VP and GR as elements of that order that represent all 3 genders
simultaneously in an overall —ve|ntrl|+ve tripartite system. This emphasizes the horizontal consistency
of the constituent elements within a layer, as well as their consistent differentiation by polar quality, in
terms of tripartite gender and associated vertical consistency. That exploration of the cluster of ideas is
insightful, and to some extent better characterizes the nature of the order; the regular disposition of PPs
in the PZ3 schema and the consistency of their interrelationships strongly suggests the archaic quality
of the 3-fold symmetrical nature of their order. But the above<—below, front<>back, and lefte>right
existential form—counterform bilateral complementarity remains undeniable, and restores the usual
sense of neutrality to the VP, QR, SR, GR, and to the level 0 & 2 faces, and the sense of bipolar +ve/—ve
relationship of the PL* < PL™ duality and TP* TP, the polar pairs VP<>GR, PL"—TP*, QR SR,
and PL* TP~ (yet to be addressed), and the a«<>® facial, form—counterform dual relationships.

This should give the reader a better sense of the qualification of the PT's within any symmetry class,
and the rigorous consistency of the formal interrelationships across all five classes. The relationships
of the exemplar Class II are generic, applying to all three Classes I-1II of the polyhedra, and Classes
IV & V of the tessellations, allowing for their nature of 3D finite form vs. 2D infinite array. The
individual PT's within a class are not of mundane equivalence, but highly differentiated expressions of
an integral order. That order appears to be characterized by an archaic 3D 3-fold symmetry, constrained
by a fundamental 2D bilateral complementarity of form—counterform that can be projected from the 3D
PZ; schema to its 2D state. In a developmental sense, the 3-fold symmetry logically predates the
subsequent imposition of bilateral form in the emergence of these forms from an initial hierophany that
more clearly reflects their noumenal nature, to realization in the phenomenal world. This perspective
better suits a traditional symbolic, sacred geometrical, or morphological approach, than a profane
perspective that finds both kinds of symmetry to coexist as different facets of the same atemporal order.
Such a developmental sense extends earlier work, which found profound human meaning in the
development implicit in the polar zonagon (as polar inversion of the regular star), with geometric
cosmogeny of creation — manifestation — reunion. It is no coincidence that the natural geometry of
the center (the counterform of the star) it unveils has preoccupied traditional Islamic architecture [10].

Future work would refine my previously advanced order of the all-space-filling polyhedra and
tessellations (honeycombs) in the light of these more recent explorations, addressing the
complementarity by gender and by level of development from contiguous to separated PTs.

This paper addresses the need for an accessible, facile, coherent, and imageable order of the regular
and semi-regular polyhedra and tessellations for applications that are becoming increasingly germane,
such as microgravity applications, whether through scale (materials characterizations, nanomaterial
morphology), or deployment in Space (habitations and large-scale structures, manufacturing, spatial
organization), and more profoundly, the reemergence of a meaningful symbolism (Sacred
geometry/art/architecture/ aesthetics) that, in my opinion, the current environmental crisis—and its root
cause, the underlying spiritual crisis of the modern world—direly needs.
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