The Smallest Computational Complexity for the Linear Complementarity Problem with *P*-Matrix

Lei Li

Faculty of Science and Engineering, Hosei University, Koganei, Tokyo 184-8584, Japan lilei@hosei.ac.jp

Abstract

The linear complementarity problem LCP(A, q) which consists of finding an real vector $z \in \mathbb{R}^n$ such that

 $Az + q \ge 0,$

$z \ge 0,$
 $z^T (Az + q) = 0,$

where $A \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$ are given real matrix and real vector respectively. When A is a P-matrix, LCP(A, q) is a NP-complete problem. Some traditional direct methods for solving the above problem need $O(2^n n^2)$ or $O(2^n n^3)$ number of arithmetic operations at least. This paper proposes a recursive algorithm for solving the LCP(A, q) with A is a P-matrix. The maximum computational complexity for proposed algorithm is not more than $O(2^n)$ which is the possible smallest computational complexity. And the average computational complexity for proposed algorithm is not more than $O((\frac{3}{2})^n)$. The proposed algorithm has simple structure and can be implemented easily.

Keywords : Linear complementarity problem, Recursive algorithm, *P*-matrix, Computational complexity.

1 Introduction

We know that the following Linear Complementarity Problem [1] often appears in fields of the mathematical programming.

LCP(A,q): Let $A \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$, finding one or all real vectors z with satisfying

$$Az + q \ge 0,$$

$$z \ge 0,$$

$$z^{T}(Az + q) = 0.$$
(1)

The practical importance of the LCP is evidenced by the fact that linear programming problems, convex quadratic programming problems, and problems

DOI: https://doi.org/10.47880/inf2704-01